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Models for proof comprehension in secondary and tertiary education: Uniting the 
perspectives 
VERENA SPRATTE, ROSTOCK 
 

Zusammenfassung: In der Hochschuldidaktik ist das 
Beweisverständnis zuletzt zum Gegenstand eines 
eigenen, aufstrebenden Forschungszweiges gewor-
den. Obwohl die dort genutzten Modelle weitge-
hend aufeinander aufbauen, zeigt dieser Artikel 
Inkonsistenzen in ihrer Betrachtung verschiedener 
Textebenen auf. Anschließend führt er die bisheri-
gen Beiträge zu einem einheitlichen Modell des 
Beweisverständnisses zusammen. Dazu greift er auf 
aktuelle Modelle der kognitionspsychologischen 
Leseforschung zurück. Am Beispiel unterschiedlicher 
Lehr- und Lernziele zu Beweisen in Schule und Hoch-
schule erweist sich die Anschlussfähigkeit und 
Adaptivität des einheitlichen Modells.  
 
Abstract: In tertiary education didactics, proof 
comprehension has recently established itself as a 
growing research field. Although the models used 
there largely build upon each other, this article 
highlights inconsistencies in the consideration of 
different text levels. It merges the previous contri-
butions into a unified model of proof comprehen-
sion, integrating current models from cognitive-
psychological reading research. Using the example 
of different teaching and learning goals concerning 
proofs in school and university, the connectivity and 
the adaptivity of the unified model are demonstrat-
ed.  

1.  Introduction 

Research on mathematics education at the tertiary 
level has been an emerging field of study for the 
last two decades. Its growth came along with an 
increasing interest in the teaching and learning of 
proof (Mejía-Ramos et al., 2012) as 

Proofs are the heart of mathematics. [...] What is 

proved today is true – today, tomorrow and in a thou-

sand years. This distinguishes mathematics from all 

other sciences. (Grieser, 2018, p. 14, emphasis in 

original) 

Deductive reasoning is an essential characteristic of 
the text genre of proof and the specific way to gain 
knowledge within mathematics (Davis et al., 2012; 
Selden & Selden, 2013). Thus, ever since proofs 
were systematically introduced to mathematics in 
the ancient Greek culture, learning mathematics 
includes the learning of proof (Reid & Knipping, 
2010). How to introduce novices to the deductive 
`heart of mathematics´ has been a central question 

to researchers and lecturers in mathematics educa-
tion since then (Reid & Knipping, 2010). One possi-
bility to foster proof competencies in educational 
settings is to analyze existing proofs given to the 
learners as models to represent the acceptable 
deductive structure, the use of precise language, 
and specific proving techniques (Conradie & Firth, 
2000; Fischer & Malle, 1985; Weber, 2012).  

Despite the long tradition of presenting proofs in 
mathematical courses – be it oral or written, at the 
secondary or tertiary level – research on students' 
perception of those proofs is still in its infancy. In 
2009, Mejía-Ramos and Inglis pointed out and in 
2015, Sommerhoff et al. confirmed that the presen-
tation and the reception of proofs are still un-
derrepresented areas of research compared to 
proof production. Their findings initiated several 
studies focussing on the reading of proof (e.g., 
Mejía-Ramos et al., 2012; Mejía-Ramos & Weber, 
2014; Neuhaus-Eckhardt, 2022; Panse et al., 2018; 
Spratte, 2022). 

In their literature review, Mejía-Ramos and Inglis 
(2009) considered proof validation, proof evalua-
tion, and proof comprehension as three different 
reading goals. By now, their distinction is well es-
tablished in mathematics education research on the 
reading of proof (Selden & Selden, 2015). As the 
proofs presented in learning contexts serve as 
models for the genre of proof, assuming their cor-
rectness and educational value is a reasonable 
learners' habit (G. Harel & Sowder, 1998). Conse-
quently, research in proof comprehension gained 
significance, resulting e.g. in a significant number of 
recent dissertation projects related to proof com-
prehension (for example Davies, 2020; Hodds, 
2014; Neuhaus-Eckhardt, 2022). 

Yet the scope of adequate proof comprehension is 
a topic of ongoing discussion (Neuhaus-Eckhardt, 
2022; Zazkis & Zazkis, 2015). A question closely 
related is about the role proofs are supposed to 
play in schools, in teacher education, or in mathe-
matical service lectures for students of other (main-
ly scientific or economic) disciplines1. This topic has 
often been discussed, but remains current (Neu-
mann et al., 2017). What kind of comprehension 
shall students in different educational stages and 
settings gain when reading a certain proof? 
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For students of university mathematics, Neuhaus-
Eckhardt and Rach (2023) emphasized the im-
portance of understanding the general ideas and 
methods of a proof to construct similar proofs later 
on. Meanwhile, Bauer and Skill (2020) promoted 
the explanatory power of proof in university math-
ematics for non-mathematicians regarding the rela-
tion between calculatory methods and the underly-
ing models. Reading similar proofs, students from 
both groups seem to be well-advised to focus on 
different aspects of the text, resulting probably in 
varying reading behaviors (Mejía-Ramos & Weber, 
2014).  

So far, researchers in mathematics education most-
ly defined proof comprehension operationally using 
lists of indicational tasks or questions created from 
the normative point of view of mathematics profes-
sors and educators (e.g., Mejía-Ramos et al., 2012; 
Yang & Lin, 2008). These approaches to the com-
prehension-oriented reading of proofs followed a 
psychometric research tradition: They essentially 
treated the reading process as a black box, ab-
stracting from its details and focusing on the result-
ing proof comprehension (Schnotz & Dutke, 2004). 
Doing so, they tried, for example, to identify indi-
vidual characteristics that facilitate proof compre-
hension (Neuhaus-Eckhardt, 2022), to describe the 
type of understanding gained by specific groups of 
readers (Lin & Yang, 2007), or to evaluate support 
measures (Hodds, 2014).  

Besides the psychometric reading research, there is 
a second main tradition in research on general 
reading known as the cognitive-psychological ap-
proach. It analyzes how readers extract information 
from the text and build up a coherent mental text 
model. While psychometric reading research identi-
fies individual prerequisites for successful reading, 
cognitive-psychological reading research aims at 
explaining how these prerequisites enter the read-
ing process and result in varying degrees and kinds 
of reading success. Its focus lays on structures and 
processes that in combination build the compre-
hension of a given text. Thus, a well-founded cogni-
tive-psychological model of reading is necessary to 
ensure the validity of psychometrical tests for read-
ing comprehension (Schnotz & Dutke, 2004). Nev-
ertheless, the current discourse on proof compre-
hension rarely takes the more recent cognitive-
psychological findings of reading research into ac-
count, even though numerous points of contact 
exist (Neuhaus-Eckhardt, 2022). 

The main interest throughout this paper will be to 
revise the existing operational indicators and mod-
els of proof comprehension from a cognitive-
psychological perspective (Chapter 2). I will focus 
on three conceptualizations that rely on each other: 
The model of reading comprehension for geometric 
proof by Yang and Lin (2008), the assessment mod-
el of proof comprehension presented by Mejía-
Ramos et al. (2012), and the recent dissertation 
project of Neuhaus-Eckhardt (2022). A detailed 
comparison in Sections 3.1 and 3.2 results in a 
comprehensive model for the reading of proofs 
that applies to different institutional levels and 
distinct reading goals in Section 3.3. It reveals that 
in the current research on tertiary education, proof 
comprehension is narrowed to the epistemic func-
tion of proof (Rav, 1999). In secondary school con-
texts, a wider notion of reading proofs is inherent 
in the models. These (at first glance probably unin-
tuitive) findings are discussed in Chapter 4 in the 
light of different educational purposes in schools 
and universities. Chapter 4 further elaborates on 
the additional value the unified model provides for 
both teaching and research concerning the reading 
of proof. It shows how the model might enlighten 
discussions about reading processes that need to 
accomplish research on the resulting comprehen-
sion. Section 4.2 discusses how the model relates to 
the roles of proof in secondary education, universi-
ty mathematics, and university mathematics for 
non-mathematicians, while Section 4.3 discusses its 
limitations and related open questions. 

2.  Proof comprehension as a specific reading 
comprehension: The state-of-the-art  

Despite the significance of proofs for mathematics 
as a scientific discipline, the notion of `proof´ is not 
as clear to mathematicians and researchers in 
mathematics education as one might hope for 
(Czocher & Weber, 2020; Reid & Knipping, 2010). 
The popular definition of Stylianides (2007) refers 
to proof as "a connected sequence of assertions for 
or against a mathematical claim" (p. 291) that relies 
on knowledge, argumentative modes, and forms of 
expression acceptable in the (classroom) communi-
ty. According to this definition, the rules a proof has 
to follow are essentially shaped by the mathemati-
cal (sub-)community the proof addresses. 

Indeed, the socio-mathematical norms concerning 
proofs varied and still vary over time and between 
different sub-fields of mathematics (Reid & Knip-
ping, 2010). Weber and Czocher (2019) showed 
that even among professional mathematicians 
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there are substantially different judgments con-
cerning a given specific text that claims to be a 
proof. Especially, the amount of necessary or dis-
pensable detail gives rise to inconsistent judgments 
on a given prooftext (Inglis et al., 2013). Czocher 
and Weber (2020) go as far as to define proof as a 
cluster category, for which no fixed set of criteria 
constitutes membership. 

Despite all dissent, there is a kind of consensus 
among mathematicians about prototypical proofs 
(Czocher & Weber, 2020): Proofs verify a mathe-
matical statement using deductive logic strict 
enough such that all gaps might be closed in princi-
pal. They convince mathematicians and show them 
why a theorem is true. Finally, proofs need to be 
accepted by the mathematical community they 
address. Selden and Selden (2013), who restrict 
their analysis to the written representation of such 
prototypical proofs, consider these and similar 
proofs' characteristics as those of a text genre. This 
paper follows their approach and defines a proof as 
a written version of a prototypical proof. This is in 
line with what Reid and Knipping (2010) call proof 
texts.  

Throughout, I will consider reading a proof first of 
all as reading any text. Surprisingly, this is not the 
way many researchers in mathematics education 
approach this topic. Going back to the influential 
literature review by Mejía-Ramos and Inglis (2009) 
already discussed in the introduction, there is a 
now well-established distinction between three 
kinds of reading a proof: 

1) If the reader aims at judging the proof in terms 
of its correctness, his or her reading is consid-
ered as proof validation (Selden & Selden, 2015). 

2) Using any criterion other than correctness to 
assess the given text (e.g., beauty, innovation, or 
explanatory power) is called proof evaluation 
(Selden & Selden, 2015).  

3) If the rationale in reading is not a statement 
about the proof, but to gain some insight from 
reading the proof, we talk about proof compre-
hension (Mejía-Ramos et al., 2012). 

From the beginning of research on students' read-
ing of proof until the 2010s, proof validation was 
the most important criterion to measure students' 
reading success in both secondary and tertiary 
mathematics education (Davies, 2020; Weber, 
2012). The findings were alarming: Students from 
both secondary and tertiary levels considered the 
symbolic representation of mathematics as a cen-

tral indication for the validity of proofs. They ac-
cepted flawed deductive arguments or examples as 
proofs, sometimes performing at chance rate in 
their validity judgments (G. Harel & Sowder, 1998; 
Panse et al., 2018; Reid & Knipping, 2010, pp. 59-
72).  

These poor results may at least partly be caused by 
the non-assessment of students' proof comprehen-
sion and proof validation in typical mathematics 
courses: The expected assessment strongly guides 
students' learning process (Conradie & Firth, 2000). 
If proofs play a minor role in the course and remain 
unassessed at all, or if only proof construction is 
required in final examinations (as it has traditionally 
been in proof-related mathematics courses at all 
stages), it will not be the students' focus to develop 
substantial proof comprehension (Bauer & Skill, 
2020; Davies, 2020; Mejía-Ramos et al., 2012).  

It has been the urge to improve assessment in 
proof-oriented mathematics classes that moved 
Conradie and Firth (2000) to present a first proof 
comprehension test to replace reproductive tasks 
(‘State and prove Theorem X’) in written exams. 
Their suggestions were refined first by Yang and Lin 
(2008) for the secondary and later by Mejía-Ramos 
et al. (2012) and Neuhaus-Eckhardt (2022) for the 
tertiary level, all building upon the previous contri-
butions. Within this Chapter, I will trace the devel-
opment from Yang and Lin (2008) via Mejía-Ramos 
et al. (2012) to Neuhaus-Eckhardt (2022) with spe-
cial emphasis on the cognitive-psychological poten-
tial of each conceptualization. While Yang's and 
Lin's pioneering work offered some kind of compe-
tence model for proof comprehension2, the most 
popular contribution by Mejía-Ramos et al. (2012) 
restricted its model to a systematic list of opera-
tional indicators. Both Yang and Lin (2008) and 
Mejía-Ramos et al. (2012) still focussed on the as-
sessment of proof comprehension in teaching situa-
tions, whereas Neuhaus-Eckhardt (2022) very re-
cently presented the first model for proof compre-
hension as a latent construct itself. 

2.1  Yang's and Lin's Model for Reading Compre-
hension of Geometric Proof (RCGP) 

In this section, I will present the model for Reading 
Comprehension of Geometric Proof (RCGP) by Yang 
and Lin (2008) in line with its close relations to 
modern reading research. Similar to most current 
approaches in general text comprehension, Yang 
and Lin (2008) considered proof comprehension as 
the product of a cyclic process, in which the reader 
includes new information from the text into his pre-
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information and thereby constantly (re)forms a 
mental representation of the proof (Lenhard et al., 
2017; OECD, 2019). Doing so, Yang and Lin (2008) 
implicitly built their model on a cognitive-
psychological basis, even though they did not ex-
plicitly relate their considerations to modern mod-
els or results from reading research. Instead, they 
referred to Duval (1998) who distinguished a micro, 
local, and global level in which information is orga-
nized when working on geometry problems. The 
underlying literature on cognitive-psychological 
reading research might be unfamiliar to readers 
with more mathematical backgrounds. However, it 
is essential in order to capture the particular 
strengths of the RCGP model. Thus, I will present it 
a little more in detail. 

One of the most popular models for reading com-
prehension is the Construction-Integration-Model 
introduced by van Dijk and Kintsch (1983). It de-
scribes comprehending a text as the formation of a 
mental text representation and distinguishes be-
tween the text surface, the text base, and the situa-
tion model (van Dijk & Kintsch, 1983). This influen-
tial distinction might be illustrated using the exam-
ple of the daily weather forecast in a local newspa-
per: After reading it once in the morning, one will 
most likely be able to reproduce the main infor-
mation when asked for it. One might also remem-
ber the structure of the text, for example the order 
in which the information was presented. Both are 
part of the text base, a mental representation of 
the propositions' semantic content (Kintsch, 1998). 
What one will most likely not remember is the text 
surface, i.e. the exact wording the information was 
presented in (van Dijk & Kintsch, 1983). As soon as 
the information from different sections is related to 
each other ("Considering the wind and the lot of 
rain in the west, tomorrow might be rainy...") or to 
information not given in the text ("... and my um-
brella got lost, so I better buy one today."), integra-
tion of the text base into a coherent and adequate 
mental representation (the situation model) takes 
place (Kintsch, 1998). 

Depending on the prior information and the pur-
pose of the reader, the situation model will be of 
different scope and type. Superfluous information 
might be dropped, and implicitly related infor-
mation be included. While the text base relates 
information within sentences or very short passag-
es to reproduce the main content, the situation 
model connects information from the whole text to 
form a globally coherent representation (Kintsch, 
1998). Thus, the integration of information takes 

place on different text levels, which are usually 
assumed to be structured hierarchically in terms of 
the amount of information under consideration 
(Lenhard et al., 2017):  

On a micro level, single words and symbols are ana-
lyzed by the reader. Decoding symbols and single 
words to grasp their semantic content is a pre-
requisite to constructing coherence within small 
text segments, i.e. to build a text base (OECD, 
2019). Micro-level processes thus lay the basis of all 
reading processes. Note that this linguistic notion 
of micro-level resembles Duval's (1998) micro-level 
as both contain only one piece of information and 
do not establish any context yet.  

Referring to the deductive structure of proof, Yang 
and Lin (2008) now claim that proof comprehension 
requires two such micro-level processes: On the 
one hand, the content needs to be decoded seman-
tically. In line with van Dijk and Kintsch (1983), they 
call the corresponding semantic micro-level the 
surface level of reading comprehension. On the 
other hand, the same information may take differ-
ent logical roles in a proof, for example, when a 
statement is first proved and later built on. Note 
that the argumentation steps are not yet recon-
structed on the micro level. Rather, signal words 
such as "assumption", "implies" or conjunctions 
give preceding or following information a certain 
logical status. To identify this status, it is not neces-
sary to decode the information itself. Thus, there 
exists a logic micro-level called the level of recog-
nizing elements besides the semantic surface level 
discussed in reading research (Lenhard et al., 2017). 

In line with (but without explicit reference to) the 
famous Toulmin-Scheme for the analysis of argu-
ments, Yang and Lin (2008) consider the logic mi-
cro-level as the foundation to construct local co-
herence within one argumentation step in the 
proof (Toulmin, 2003). According to Toulmin, in-
formation considered as an evident fact operates as 
data that underpins the claim, whereas a warrant 
clarifies how the claim is supported by the data. 
Toulmin further considers backings that support 
the warrant, modal qualifiers that clarify the degree 
of conviction for the claim, and rebuttals to state 
exceptional cases.  

Analyzing proofs that operate with strictly deduc-
tive conclusions, researchers in mathematics edu-
cation often reduce the Toulmin-Scheme to data, 
warrant, and conclusion only (Inglis et al., 2007). 
Accordingly, Yang and Lin (2008) consider chaining 
of “premises, properties and conclusions in this 
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proof” (p. 62), if necessary with reference to essen-
tial figures, as the characteristic operation on the 
local text level of their RCGP model.3 Therefore, this 
level is called the level of chaining elements. 

On the three levels described so far, coherence was 
constructed within sentences to grasp their mean-
ing including the presented single argumentative 
steps. This resembles Kintsch's notion of the text 
base. In contrast, to construct global coherence the 
reader integrates the different steps into a situa-
tional model of the text, here the (geometric) 
proof. According to Yang and Lin (2008), this re-
quires attention to both the semantic and the logi-
cal value of information. Only on this global level, 
the reader might for example grasp the importance 
of different assumptions for the theorem and dis-
tinguish them from similar assumptions of related 
theorems. 

Altogether, Yang and Lin (2008) distinguish four 
levels, namely the 

1) surface level (semantic micro-level), 

2) recognizing elements (logic micro-level), 

3) chaining elements (logic local level), and 

4) encapsulation of the proof (semantic and logic 
global level), 

that form the basis of their RCGP model. Analo-
gously to text levels in general reading comprehen-
sion, the levels are not considered in a strict hierar-
chy: As argued above, the semantic and the logic 
micro-level are considered to be independent of 
each other. Global coherence can (at least partly) 
be constructed even if certain local steps are not 
fully understood. Further, contextual information 
from the global level may be used to reconstruct 
the meaning of an unknown term (Lenhard et al., 
2017) on the semantic micro level. Even though 
proofs usually rely at least partly on dense symbolic 
language and offer little redundancy4 (Österholm, 
2008; Selden & Selden, 2013), the reader might 
refer to the context to approach unknown terms or 
notation, for example when investigating the role 
of a symbol within a formula. 

One might have noticed that, so far, the RCGP 
model is not very specific to mathematical proof. 
Even though Yang and Lin include a logic micro-
level, this should not be considered a unique fea-
ture of proof. As well as the Toulmin-Scheme, this 
text level could be applied to most arguments from 
many argumentative fields (Toulmin, 2003). In-
stead, the four levels offer the opportunity to con-

sider proof comprehension in a still quite general 
framework based on reading and argumentation 
research. 

From an extensive literature review on (sometimes 
geometry-specific) proofs and from interviews with 
mathematicians and mathematics educators, Yang 
and Lin (2008) collected 19 so-called contents of 
what it means to understand a proof to specify the 
levels concerning proof comprehension. Doing so, 
they provided an important step towards opera-
tionalizing proof comprehension.5 Yang and Lin 
(2008) structured the 19 contents into six facets: 

1) Basic knowledge includes knowledge of symbols, 
terms, figures, and the proof's methodology. 

2) The Logical status refers to recognizing the logi-
cal value of statements within the proof or the 
proven theorem and checking proof steps for 
their deductive correctness. 

3) Integration / Summarization takes place when 
the proof is structured into lemmata and the 
main idea of the proof is identified. It also in-
cludes making implicit warrants explicit, probably 
adding information that is not given within the 
text. 

4) Generality is constituted by checking the validity 
of the proof or the proven statement, which may 
(but does not necessarily) lead to a judgment of 
the theorem's epistemic value as generally true 
or false. 

5) Application / Extension expands the proven 
statement by adding other well-established 
statements that allow a generalization or specifi-
cation. Another kind of application is to use the 
proof method in a different context, to compare 
different proof methods, or to apply the state-
ment or its proof, e.g. to construct examples. 

6) Appreciation / Evaluation refers to the percep-
tion of beauty or the mathematical and cultural 
value of the proof or the proven statement. 

In line with their theoretical perception of text lev-
els, Yang and Lin (2008) placed the six facets be-
tween the four levels as shown in Figure 1.3 To 
measure secondary school students' comprehen-
sion of a geometric6 proof, they operationalized the 
facets (note: not the levels) by means of the con-
crete proof text. Students' answers to the resulting 
comprehension questions specifying a certain facet 
indicate their text comprehension of the corre-
sponding next-lower level: Students who give cor-
rect answers to questions on Logical Status are 
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supposed to have gained an understanding of the 
level of recognizing elements etc. An exception is 
the facet of Appreciation / Evaluation, which was 
not operationalized due to its subjective character 
that opposes objective assessment.  

As Yang and Lin (2008) pointed out, the facets re-
semble Bloom's famous taxonomy of cognitive ed-
ucational goals. This increased their confidence in 
the integrity of the RCGP as well as it strengthens 
the RCGP's hierarchic tendency. According to Yang 
and Lin (2008), a multidimensional scaling analysis 
indeed confirmed to group the facets as shown in 
Figure 1. Yet, the methodology chosen by the au-
thors does not allow conclusions about the nature 
of the separating layers. Therefore, their corre-
spondence to the text levels still needs to be con-
sidered as a theoretical assumption. 

By introducing the RCGP model, Yang and Lin 
(2008) innovated research in the reading of proof in 
several ways: They were the first to consider differ-
ent text levels of coherence and gave the first ex-
tensive list of operational indicators for the suc-
cessful reading of proof. Further, their work made 
secondary school students' geometric6 proof com-
prehension measurable and thereby initiated re-
search about the role of individual characteristics 
and about the development of proof-reading skills 
(e.g., Lin & Yang, 2007).  

 

 

Fig. 1:  Reading Comprehension of Geometric Proof by Yang 
and Lin (2008). Visualization of the Toulmin-Scheme 
within text levels adapted from Knipping and Reid 
(2019).3 

Unfortunately, the RCGP model is mostly referred 
to in terms of its levels only, denying its original 
complexity and the huge effort to establish a rela-
tion between the independently developed facets 
and levels (Hodds, 2014; Mejía-Ramos et al., 2012; 
Zazkis & Zazkis, 2015). 

2.2  The Assessment Model for Proof Comprehen-
sion in Undergraduate Mathematics (AMPC) 

Even though the RCGP model was developed for 
the context of secondary school geometry classes, 
Mejía-Ramos et al. (2012) claimed its potential to 
be expanded to a general Assessment Model for 
Proof Comprehension (AMPC) in undergraduate 
mathematics. Recall that the levels presented in the 
RCGP model fit the current cognitive-psychological 
reading research well (as shown in Section 2.1) and 
that this branch of research claims to describe 
reading processes for readers of different expertise, 
age, and in various kinds of reading situations 
(OECD, 2019). Thus, it seems reasonable that the 
RCGP levels apply to the reading of proofs in ter-
tiary education as well. 

According to Mejía-Ramos et al. (2012), the rising 
complexity and length of the proofs used in univer-
sity mathematics courses1 increase the relevance of 
proof comprehension on a global text level (Selden, 
2012). Thus, the authors developed an operational-
ization of the encapsulation level, which remained 
unassessed in the RCGP. Leaving the facets unmen-
tioned, Mejía-Ramos et al. (2012) referred to the 
first three levels of RCGP as different dimensions of 
local proof comprehension: 

1) The Meaning of terms and statements corre-
sponds to the RCGP surface level. It is operation-
alized by stating definitions or examples for given 
terms in the proof and trivial reformulations and 
implications of statements within the proof. 

2) The dimension of the Logical status of state-
ments and proof framework requires the identifi-
cation of the top-level logical structure, like 
proof by induction or contradiction, and the 
recognition of the logical status of statements 
within this framework. It refers to the RCGP level 
of recognizing elements. 

3) The Justification of claims resembles the RCGP 
level of chaining elements and includes identify-
ing all claims supported by some given data or 
vice-versa all data supporting a given claim, and 
making implicit warrants explicit. 
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Fig. 2:  Assessment Model of Proof Comprehension by Mejía-Ramos et al. (2012) as based on the model for RCGP. 

Note that the AMPC presumes the correspond-
ence between the RCGP's levels and facets on the 
surface level, as the first dimension of AMPC 
closely relates to the first facet of RCGP. While the 
second AMPC dimension resembles both the sec-
ond RCGP facet and level, the third AMPC dimen-
sion shows a better fit to the third RCGP level than 
to any of the facets. In particular, Mejía-Ramos et 
al. (2012) did not consider aspects from the 
RCGP's facet of Integration and Summarization as 
indicators for local proof comprehension. Further, 
they used the term local in a broader way than 
usual for reading research by subsuming the mi-
cro-level(s) into the local dimensions. 

As an expansion of the encapsulation level, Mejía-
Ramos et al. (2012) presented four different glob-
al dimensions of proof comprehension, based on 
another literature review and interviews with uni-
versity mathematicians about their reasons for 
reading and presenting proofs and their notion of 
understanding proof.  

4) Summarizing the whole proof or a sub-proof via 
high-level ideas highlights – in contrast to the 
logical proof framework – the content-related 
core ideas that might well be specific to the 
mathematical domain the proof is placed in. 

5) To partition the proof into modules and to iden-
tify their purpose and the logical relations be-
tween each other belongs to the dimension 
Identifying the modular structure. 

6) Identifying and transferring the proof method 
to another proving task is summarized in the 
dimension of Transferring the general ideas or 
methods to another context. It resembles the 
RCGP facet of Application / Extension. 

7) Illustrating a sequence of inferences (and not 
only a term as in the first dimension) with ex-
amples or a diagram constitutes the last dimen-
sion. 

The methodology used by Mejía-Ramos et al. 
(2012) to derive the new dimensions is very similar 
to the RCGP's development of facets. It seems 
legitimate to interpret the global AMPC dimen-
sions in analogy to the RCGP's sixth facet. This 
leads to a visualization of the AMPC in Figure 2 
that adheres closely to Figure 1.3 It reveals a good 
fit between the cognitive-psychologically based 
text levels and the AMPC dimensions, even though 
these relations are not discussed by Mejía-Ramos 
et al. (2012). 

As Yang and Lin (2008) did for their RCGP model, 
Mejía-Ramos et al. (2012) presented both the local 
and the global comprehension as distinct, but not 
hierarchical. In the same way, the authors did not 
claim that the seven dimensions cover all aspects 
of proof comprehension or that they were empiri-
cally separable. Their aim was not to build a com-
petence model but to allow a suitable assessment 
of proof comprehension. Their carefully designed 
proof comprehension tests should enhance teach-
ing quality for undergraduate mathematics and 
help to evaluate the impact of teaching experi-
ments. Therefore, and in the light of the ambigu-
ous labeling of Integration or Summarization as 
local in the RCGP and global in the AMPC, it is not 
surprising that all attempts to empirically separate 
local and global comprehension known to the 
author of this paper so far have failed (e.g., Neu-
haus-Eckhardt, 2022 and an unpublished one by 
the author herself). 
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In the decade after being published, the AMPC re-
ceived a lot of attention among mathematics edu-
cation researchers. Compared to the RCGP model 
with levels and facets, the AMPC has a slim, thus 
attractive design. Its strength lies in its broad ap-
plicability to various mathematical domains2 of 
undergraduate mathematics and to various con-
texts: While Mejía-Ramos et al. (2017) gave de-
tailed instructions to create proof comprehension 
tests on the highest standard for research and high-
stakes examinations, Bickerton and Sangwin (2021) 
offered a pragmatic manual to construct automati-
cally assessed proof comprehension tasks in line 
with the AMPC, for example for weekly exercise 
classes. 

2.3  Components of proof comprehension as a 
situative text model  

As seen in Section 2.2, the AMPC deviated from the 
implicit cognitive-psychological roots of the RCGP 
and focused on the operationalization of global 
reading comprehension (the RCGP's encapsulation 
level) for mathematical proofs. In her dissertation, 
Neuhaus-Eckhardt (2022) recombined the AMPC's 
focus on proofs in university mathematics courses1 
with cognitive-psychological models from general 
reading research. 

Referring back to Kintsch’s notion of situative men-
tal text models, Neuhaus-Eckhardt (2022) defined 
proof comprehension as a coherent mental model 
of a proof built after reading the text. She distin-
guished between a theoretical mental model of-
fered by the text and an individual mental model 
developed by a specific reader in a certain reading 
situation. To specify the components such a mental 
model may7 consist of, Neuhaus-Eckhardt first re-
ferred back to the operational indicators given in 
the RCGP and the AMCP, enriching them with con-
tributions by Zazkis & Zazkis (2015), Pracht (1979), 
and others. In a second step, she characterized 
what a mental representation of the proof needs to 
contain to successfully respond to these indicators. 

In the first step, Neuhaus-Eckhardt (2022) collected 
and sorted the different indicators for proof com-
prehension according to three levels of coherence. 
Doing so, she adopted the AMPC's wider notion of 
local comprehension as presented in Section 2.2 
which incorporates the logic and semantic micro-
levels. This results from their shared focus on uni-
versity students in mathematical programs and the 
role and characteristics of proofs in these courses 

(as has been discussed in Section 2.2 and will be 
explored in more depth in Section 4.2.2).  

In line with Bickerton and Sangwin (2021), Neu-
haus-Eckhardt reasonably noted that the dimen-
sions labeled as global by Mejía-Ramos et al. (2012) 
actually operate on different text levels: The sixth 
dimension, namely to transfer the general ideas or 
methods to another context, leaves the scope of 
the proof itself. It requires capturing the scope and 
possible limitations of proving methods and ideas, 
which can be seen as a form of proof evaluation 
according to usefulness or innovative potential. 
Transferring proof methods further necessarily 
includes some kind of proof production, even if in a 
reduced form as suggested by Mejía-Ramos et al. 
(2012). 

Following Neuhaus-Eckhardt (2022), I will call this 
new text level the level beyond the text. Note that 
the remaining three global dimensions Mejía-
Ramos et al. (2012) propose do indeed operate on 
the global level as defined in Section 2.1 and do not 
go beyond the text. Neuhaus-Eckhardt's collection 
of operational indicators for proof comprehension 
thus distinguishes between local, global, and be-
yond-the-text elements as shown in Figure 3.3  

Neuhaus-Eckhardt (2022) motivated the distinction 
of the level beyond the text from the global level 
with the common practice among mathematicians 
to read proofs for good proving ideas and to pre-
sent proofs to teach their university mathematics 
students how to prove (Mejía-Ramos & Weber, 
2014; Weber, 2012). Neuhaus-Eckhardt herself 
pointed out that including aspects at least very 
close to proof construction in a model of proof 
comprehension is a disputable question (Neuhaus-
Eckhardt, 2022). Whether it is appropriate or not 
depends on how close the constructed proof is to 
the given original, as this determines the relevance 
of text-external information. 

General reading research discusses the importance 
of information and applications external to the text 
as well. Lenhard et al. (2017) presented a reading 
comprehension test including questions that can 
only be answered by deducing an instance that is 
itself not directly described in the text. The PISA 
reading framework lists the assessment of the qual-
ity and credibility as well as reflection on content 
and form as advanced processes of reading com-
prehension (OECD, 2019). In line with this, proof 
methods including their scopes and limitations have 
a huge impact on mathematicians' judgment about 
a proof's quality (Weber & Mejía-Ramos, 2011). 
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Fig. 3:  Operational indicators for proof comprehension according to Neuhaus-Eckhardt (2022) as based on the AMPC. Written 
in green are the possible components of proof comprehension as a mental model. 

 

Yet in the OECD's definition of reading literacy, 
"doing something with what we read" (2019, p. 28), 
is not a part of understanding the text, but placed 
on the same rank. This includes using the text to 
create something new such as a new proof. Text-
generating actions are one of those aspects that 
distinguish reading literacy from mere text com-
prehension.8  

Neuhaus-Eckhardt (2022) reacted to these nuances 
in her second step, where she synthesized the op-
erational indicators of proof comprehension to nine 
possible7 components of proof comprehension as a 
mental model. To that end, she excluded explicit 
text production such as summaries or generaliza-
tions as well as strategic knowledge but incorpo-
rated the proof method including its scope and 
limitations. She further detached the components 
from the text levels, arguing that the distinction 
between the local and the global level becomes 
meaningless as the situation model does not pre-
serve the text order. Nevertheless, as the following 
consideration of the nine components will show, 
there is still variety in the amount of information to 
be considered. 

Four of the nine components arose from the 
AMPC's local dimensions. As already seen in Fig-
ure 3, Neuhaus-Eckhardt split the proof framework 
from the logical status of statements, resulting in 
the four components 

1) Meaning of terms and statements that refers to 
definitions and visualizations of terms in the 
proof and the semantic meaning and trivial con-

sequences of statements, including the proven 
statement itself, 

2) Logical status of statements within the proof, 
especially to distinguish assumptions from 
claims, 

3) Proof framework that includes the proof method 
such as (in)direct proof or proof by induction, the 
relation between single statements and the claim 
to be proven and the purpose of a single state-
ment for the proof, and 

4) Justification of claims where single steps of the 
proof are reconstructed and proof gaps are ex-
plained, including identifying all statements sup-
ported by a specific statement and justifying the 
completeness of case distinctions. 

Following Kintsch (1998), these local components 
are not parts of a mental text model. They rather 
belong to the text base. Neuhaus-Eckhardt (2022) 
nevertheless included them in her theoretical mod-
el of proof comprehension, arguing that the mental 
model emerges from the text base and enriches it 
with global coherence without losing those compo-
nents necessary to understand the proof.  

As parts of a theoretical mental model of the proof 
in a strict sense, i.e. related to the global text level, 
proof comprehension according to Neuhaus-
Eckhardt (2022) contains (if suitable)7  

5) the main idea(s) of the proof that allows to 
summarize the given text, 
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6) the proof's modular structure including the con-
nection between different modules and their 
purpose for the complete proof, but not the or-
der in which they were originally presented, and 

7) the proof method used within the proof that is 
intended by the lecturers or readers to be trans-
ferred to similar proofs. Note that this transfera-
ble proof method could differ from the main idea 
and the proof framework, e.g. if it contains a 
specific formulation of a definition that is espe-
cially useful in certain proof settings.9 

The proof method already points at the level be-
yond the text, where it is motivated from. Still, it 
does not leave the scope of the proof itself, where-
as knowledge of the 

8) scope and limits of the proof method requires 
experience with multiple proofs, so clearly goes 
beyond the global text level. 

The last component presented in Neuhaus-
Eckhardt (2022) does not clearly relate to one of 
the text levels already discussed. The author re-
ferred to the illustration of several proof steps with 
examples and diagrams required in the seventh 
AMPC component and Zazkis’ and Zazkis’ (2015) 
suggestion to include a similar, but local visual illus-
tration of notions. Therefore, she claimed that  

9) useful examples and visualizations for notions or 
for techniques used within the proof should be 
incorporated into sound proof comprehension. 
Similar to the main ideas that form the basis of 
sustainable proof summaries – which may serve 
as indicators of proof comprehension, but are 
not themselves part of the mental model of the 
proof (Davies, 2020) – the knowledge of useful il-
lustrations is a prerequisite for some operational 
indicators. 

At first sight, the differences between the opera-
tional indicators for and the components of proof 
comprehension seem rather insignificant. But Neu-
haus-Eckhardt’s (2022) detailed analysis sharpened 
the awareness for the huge borderland between 
proof production and proof comprehension in eve-
ryday teaching and learning of proof in university 
mathematics. Her notion of the level beyond the 
text might help to structure this grey area, even 
though its practical value still needs to be proved 
empirically. Considering the rising interest in new 
ideas for the teaching of proof, such as faded 
worked examples or spelling out the proof for a 
specific example (Bickerton & Sangwin, 2021; 
Kempen, 2018), the interplay of proof comprehen-

sion and proof production might gain even more 
attention in the future (Neuhaus-Eckhardt & Rach, 
2023). 

3.  Comparing, reflecting, and uniting the 
models of proof comprehension  

So far, I have shown the successive development of 
models for proof comprehension from Yang and Lin 
(2008) via Mejía-Ramos et al. (2012) to Neuhaus-
Eckhardt (2022). Yang's and Lin's original considera-
tion closely related to different scopes of infor-
mation considered during the reading process, thus 
offering lots of links to cognitive-psychological 
reading research. Focussing on assessment in uni-
versity mathematics, Mejía-Ramos et al. (2012) 
stressed the importance of global proof compre-
hension while merging micro and local text levels. 
Neuhaus-Eckhardt (2022) carried this development 
further by introducing a level beyond the text that 
draws attention to the borderland between proof 
comprehension and proof production, which is of 
great importance, especially among university 
mathematicians. 

Altogether, the models offer five different ranges of 
information to be considered while constructing a 
coherent situation model of the text: a logical and a 
semantical micro level, a local and a global level of 
coherence, and a level-beyond-the-text to establish 
connections to related or similar proofs. In light of 
all five text levels, I will now revise the different 
models presented in Chapter 2 and show inconsist-
encies in the connections between text levels and 
operational indicators for proof comprehension. 
This investigation will lead to a unification of the 
models in Section 3.3. 

3.1 A closer look at the text levels in the models 
of proof comprehension 

I will start the comparison with the two micro-
levels introduced by Yang and Lin (2008). Both the 
AMPC and Neuhaus-Eckhardt’s model adopted the 
surface level from the RCGP model. On this seman-
tic micro-level, readers grasp the meaning of terms 
and statements within the proof. Among all three 
models, there is also consensus about the logic 
micro-level that is expressed in recognizing the 
logical status of a statement within the proof. 

The RCGP model measured understanding on this 
logic micro-level via the second and third RCGP 
facet. Recall that the second facet included check-
ing the correctness of a single argumentative step. 
In contrast, the other models see such a check as 
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an indicator for the local level (not for a micro-
level). As already discussed in Section 2.2, the 
AMPC further refused Yang's and Lin's allocation of 
the third, fourth, and fifth facet, which motivates a 
more detailed analysis. 

While Mejía-Ramos et al. (2012) considered sum-
marizing the proof according to its main idea a 
global activity, Yang and Lin (2008) placed it as part 
of Integration / Summarization between the second 
and third level, i.e. even below the level of chaining 
elements (local coherence). This difference could 
be caused by the characteristics of proofs used in 
secondary schools, which are usually shorter than 
those on the tertiary level and have a less complex, 
more often than not chained argumentative struc-
ture (Selden, 2012). To extract the main idea of 
such a short, linear proof might sometimes be the 
same as understanding the one central argumenta-
tive step, thus being a matter of local coherence. 
Nevertheless, in line with the PISA reading frame-
work, I argue that identifying which of the (few) 
chained steps is central is a matter of global coher-
ence: OECD (2019) points out that identifying cen-
tral ideas or summarizing longer or more complex 
passages (such as proofs used in university mathe-
matics) requires integration of the text base into a 
situation model, thus is a matter of global coher-
ence. Thus, just as Toulmin (2003) suggested, the 
line between local and global coherence might best 
be drawn when more than one argumentative step 
comes into play – implying that a local and a global 
coherence level can be distinguished even for most 
proofs used on the secondary level (Brunner, 2014). 

The position of summarizing below the local level is 
only one example of vagueness within the RCGP 
model regarding the fit of the facets to the levels 
they measure. These ambiguities can at least partly 
be explained by the fact that the RCGP model lacks 
a level of global coherence: Even though Yang and 
Lin (2008) themselves considered the encapsulation 
level as one of global coherence, it inherently goes 
beyond the text. 

The characteristic of the top level is to interiorize this 

proposition and its proof as a whole, where one can 

apply this proposition and its proof, and distinguish 

different premises from similar propositions. (Yang & 

Lin, 2008, p. 63) 

Here, Yang and Lin (2008) indicated that an encap-
sulated proof comprehension allows comparisons 
between similar statements with slightly different 
premises and applications of the proposition and its 
proof, e.g. to further proof constructions. A global 
level that stays inside the scope of the proof to be 

read is missing in the RCGP model. This may again 
be caused by characteristics of proofs used on the 
secondary level.  

Revising the RCGP facets in the light of all five text 
levels, some aspects of single argumentative steps 
from both the second and the third facet require 
proof comprehension on a level of local coherence. 
The AMPC and Neuhaus-Eckhard combined these 
aspects in their dimension `justification of claims´, 
which seems more appropriate for the assessment 
of how readers establish local coherence than the 
RCGP facets of Generality and Application / Exten-
sion. Throughout, in case of ambiguity, I will follow 
the AMPC's structure in questions regarding the 
line between local and global coherence levels.10 

Just as the RCGP model lacked attention to ques-
tions concerning global coherence, both the AMPC 
and its expansion by Neuhaus-Eckhardt diminished 
the importance of the micro-levels by subsuming 
them as local aspects (see Section 2.2). Conse-
quently, Yang's and Lin's distinction between se-
mantic and logic information was not considered 
either. In Section 4.2.2, I will point out why this is 
not appropriate, even for proofs in university 
mathematics education. 

3.2 The relation of proof comprehension to eval-
uation and validation 

Additionally, the models differ in the way they re-
late proof validation and proof evaluation to proof 
comprehension. Yang and Lin (2008) considered the 
evaluative act of "appreciating the beauty of math-
ematical structure" (p. 67) in their seventh facet of 
proof comprehension. This reaffirmed Selden's and 
Selden's (2015) claim that proof evaluation must be 
based on substantial proof comprehension. Follow-
ing this point of view, it should be possible to use a 
reader's evaluated judgment of a given proof to 
gain information about the quality of his or her 
proof comprehension. Similarly, the PISA reading 
framework refers to evaluative tasks as  

drawing upon one's knowledge, opinions or attitudes 

beyond the text in order to relate the information pro-

vided within the text to one’s own conceptual and ex-

periential frames of reference. (OECD, 2019, p. 35)  

Analogously, Yang and Lin (2008) used proof valida-
tion as an operational indicator for proof compre-
hension in the facet of Generality. Both Mejía-
Ramos et al. (2012) and Neuhaus-Eckhardt (2022) 
did not keep up with this approach, but followed 
the suggestion of  Mejía-Ramos and Inglis (2009) to 
treat different reading goals separately. They based 
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their decision on the assumption that different 
reading goals will result in different reading behav-
iors, as suggested by Weber and Mejía-Ramos 
(2011). At least three arguments challenge this 
point of view: On the one hand, current cognitive-
psychological approaches to general reading de-
scribe all kinds of reading processes, including dif-
ferent readers' intentions, using the same reading 
framework (OECD, 2019; Schnotz & Dutke, 2004). 
Describing the reading of proof from the perspec-
tive of the different text levels should therefore not 
be restricted to proof comprehension. 

On the other hand, Panse et al. (2018) compared 
the eye movements of novices and experts when 
reading proofs known to be correct and when read-
ing proofs of unknown correctness. They found no 
significant differences regarding the assumed truth 
or fallibility of the proof. Therefore, they raised the 
question of whether proof comprehension and 
validation are necessarily intermingled as  

perhaps the majority of validation effort is actually di-

rected at comprehension, because comprehension 

must be attained before a validity judgment can be 

made. Or perhaps a sincere comprehension attempt 

provides validation ‘for free’, because good compre-

hension would flag up invalid inferences. (Panse et 

al., 2018, p. 370) 

This challenges the practical use of the theoretical 
distinction between validation and comprehension 
as reading goals. Further, far more than the com-
mon three reading intentions are needed to appro-
priately describe the proof-reading behavior of 
undergraduate students in university mathematics 
(Spratte, 2022, 2023): Several students read proofs 
for example to gain a deeper conceptual under-
standing of notions within the proof. The distinc-
tion between the different reading goals according 
to Weber and Mejia-Ramos (2011) therefore runs 
the risk of promoting blind spots in research re-
garding students’ reading behavior. 

Finally, Neuhaus-Eckhardt's (2022) definition of 
proof comprehension itself established links to 
proof validation and proof evaluation. According to 
her, to understand a written proof means to con-
struct a coherent mental model for it, and proof 
comprehension is the resulting mental model. Es-
pecially, her mental model incorporated micro- and 
local-level components such as the meaning of 
terms and statements. This implies that there is 
hardly any reading of proof without building some 
proof comprehension: Any information taken from 
the text is processed on the base of existing pre-
information and forms (part of) a mental represen-

tation of the text. Thus, the question of interest is 
not the existence of proof comprehension, but its 
scope and its adequacy to the text and to the soci-
ocultural reading situation including the reader's 
intention (Neuhaus-Eckhardt, 2022; see also Sec-
tion 4.2). Proof comprehension hence can be de-
scribed for every process of reading proof, inde-
pendent of the reader‘s intentions. 

3.3 The Unified Model for Proof Comprehension 
(UMPC) 

Altogether, the distinction of the global text level 
from the level beyond the text allows uniting both 
the RCGP model and the AMPC with the refine-
ments presented in Neuhaus-Eckhardt (2022) to a 
new, generalized model of proof comprehension 
which I will call the Unified Model for Proof Com-
prehension (UMPC). As suggested in the RCGP 
model and by Toulmin (2003), the unified model 
distinguishes the semantic content of the text from 
its logical structure and thus includes two micro-
levels placed next to each other. As it is common in 
the literature for general reading comprehension, 
four text levels form a second distinctive feature 
(Lenhard et al., 2017): Micro, local, and global text 
levels are distinguished from each other and from 
the level beyond the text. From the local level on, 
both logic and semantic information need to be 
taken into account simultaneously (though not 
evenly distributed) to construct coherence. Thus, 
the UMPC consists of five levels for the perception 
of new information from the text. 

Constructing local coherence in single argumenta-
tion steps is viewed as a mainly (though not purely) 
logical process and is therefore placed closer to the 
dimension of logic than to the semantic dimension 
(Toulmin, 2003; Yang & Lin, 2008). In contrast, 
global coherence requires more semantic under-
standing. This leads to a pyramid shape of the 
UMPC, as seen in Figure 4.3 

As the unified model is fundamentally based on 
components of the three models presented in 
Chapter 2, their operational indicators are sorted 
into the UMPC in Figure 4. In brackets are those 
indicators that widely rely upon the readers' subse-
quent proof productions, i.e. those not to be inter-
preted as components of a theoretical mental 
model according to Neuhaus-Eckhardt (2022). The 
dimensions suggested as local in the AMPC and 
adopted by Neuhaus-Eckhardt are distributed 
among both micro levels and the local level. This is 
in line with the first three levels of the RCGP model, 
though the arrangement of the micro levels next to 
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each other prevents the hierarchical impression 
inherent to the RCGP model, which I discussed in 
Section 2.1. Following Neuhaus-Eckhardt (2022), 
the AMPC's global dimension of Transferring is now 
referred to on the level beyond the text. 

This more detailed view including all text levels 
might explain why the previous attempts to empiri-
cally confirm the distinction between a local and a 
global proof comprehension as defined in Mejía-
Ramos et al. (2012) failed. Even if one hopes to 
identify the text levels as latent variables in proof 
comprehension tests11, one must question the unity 
of the local factors grouped in the AMPC critically. 

In line with the RCGP model, the unified model in 
Figure 4 includes the evaluation and the validation 
of proof, challenging the well-established distinc-
tion of the different reading activities established in 
Selden and Selden (2015). Reasons for a more holis-
tic view were already discussed in Section 3.1. Note 
that the two activities are included in the UMPC 
similarly, but not analogously to facets in the RCGP 
model. In the RCGP model, both were used as op-
erationalizations for comprehension on the next-
lower text level. In the UMPC, this is adopted only 
for proof evaluation and the level beyond the text. 
For proof validation, all four levels inherent to the 
text itself need to be taken into account. 

4.  Contributions by and limitations of the 
UMPC 

Throughout this chapter, I will discuss the addition-
al value the UMPC offers for both teaching and 
research related to the reading of proof in different 
educational settings. Due to the limited scope of 
this paper, I will not provide empirical data to sup-
port the UMPC's practical value.12 I will show the 
usefulness of the UMPC first by considering proof 
reading processes from a researcher's perspective. 
Second, I will argue for the need to consider all 
presented levels in both secondary and tertiary 
education.  

4.1 Adequacy to proof reading processes 

As argued in Chapter 1, psychometrical measure-
ments of proof comprehension need to be based 
on sound cognitive-psychological models of reading 
proof to ensure the assessment's validity. All three 
models of proof comprehension in Chapter 2 of-
fered links to established cognitive-psychological 
reading research. Nevertheless, their common main 
focus was to provide efficient and valid assessment 
instruments for proof comprehension as the pro-
duct of a successful reading process.  

 

 

 

Fig. 4:  Unified model for proof comprehension (UMPC) including proof validation and proof evaluation. Colors for operational 
indicators: Red: RCGP, Blue: AMPC, Green: Neuhaus-Eckhardt (2022), Teal: both AMPC and Neuhaus-Eckhardt (2022). In 
brackets are those indicators that widely rely upon the readers' subsequent proof productions. 
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So far, there are only a few attempts to describe 
the proof-reading process itself. Exceptions are 
some current approaches to reading strategies 
going back to Weber (2015) and Eye-Tracking stud-
ies such as Panse et al. (2018).13 One reason for the 
sparse research situation could be the higher effort 
that is necessary to observe the reading process 
instead of its product: Studies involving eye-
tracking or videographic analysis of reading pro-
cesses are more time-consuming and more expen-
sive than a questionnaire or an interview. Thus, 
they usually restrict to small numbers of partici-
pants, while the psychometrical assessment of 
proof comprehension easily allows studies of larger 
scale. 

Another reason not to investigate the process of 
reading proofs might be the lack of an appropriate 
theoretical model to be applied in the analysis of 
the data. The existing models collect and arrange 
facets/components of proof comprehension named 
by experts, which seems plausible to ensure the 
validity of a psychometrical approach to proof 
comprehension. But to investigate the reading pro-
cess itself the genesis of these components in a 
reader's mind needs to be considered. The UMPC 
follows a common way to address this problem in 
general reading research by raising attention to the 
text levels. Even though the levels were inherent in 
the existing contributions by Yang and Lin (2008), 
Mejía-Ramos et al. (2012), and Neuhaus-Eckhardt 
(2022), the UMPC restructures and states them 
explicitly, incorporating current cognitive-
psychological reading research and Toulmin's ar-
gumentation theory. Thus, the UMPC seems more 
appropriate to describe proof reading processes 
than any of the preexisting models from Chapter 2. 

Yet the UMPC is not the only process-oriented 
model for reading proofs: Ahmadpour et al. (2019) 
offer a proof-specific model of reading processes by 
"describing the transitions between different states 
of understanding when reading a proof" (p. 1). 
Their model includes seven states, organized in 
three different paths a reader will likely (but not 
necessarily) follow through a proof text: On the 
path of structure, the reader first uses examples to 
follow the text, from which he subsequently gener-
alizes, abstracts and formalizes his understanding. 
On the path of procedure, formalization takes place 
without abstraction, i.e. the proof is read as a for-
malized general procedure instead of an abstract 
structure (Sfard, 1991). Finally, readers on the path 
of form focus on the manipulation of symbols only. 

Ahmadpour et al. (2019) do not relate their model 
to research about general reading processes, but 
base it on theories from mathematics education. 
They consider, for example, the distinction on what 
establishes conviction for prospective mathemati-
cians by G. Harel and Sowder (1998) and Sfard’s 
(1991) thoughts on reification of mathematical 
concepts. Thus, their model seems to relate better 
to understanding the concept of proof in general 
than to proof comprehension of a single text. Espe-
cially for readers who are already used to operating 
with abstract mathematical concepts, the model 
presented by Ahmadpour et al. (2019) might not be 
appropriate to describe the reading of a current 
proof text. For less experienced readers, the two 
models could complement each other: It seems 
likely that students who read proofs as procedural 
proofs focus on the local coherence, heading from 
one argumentative step to the other and illustrat-
ing each step with exemplifying instances. To fur-
ther investigate the types of proof perception and 
their influence on the different levels of proof com-
prehension, empirical studies are missing so far. 

4.2 Adequacy to different educational stages and 
degrees of formalism 

As seen in Chapter 2, each of the preexisting con-
ceptions of proof comprehension lacked attention 
to at least one of the five text levels. In this section, 
I will argue that both the global level and the level 
beyond the text enrich the discussions about read-
ing proof in secondary school. To that end, a brief 
discussion about the role of proof in this educa-
tional setting is inevitable. Analogously, I will show 
the importance of the micro-levels for proof read-
ing in university mathematics education. Some brief 
thoughts on proofs in university service teaching of 
mathematics1 wind up this section. 

4.2.1 Reading proofs on the secondary level 

There is a long tradition of calls from mathematics 
educators to include mathematical reasoning and 
proving in mathematical learning processes at all 
stages (G. Harel & Sowder, 1998; Sommerhoff et 
al., 2015). Indeed, many national curricula require 
secondary students to follow another person’s 
mathematical argument, sometimes explicitly in-
cluding written versions (Bundesministerium für 
Unterricht, Kunst und Kultur, 2009; Council of Chief 
State School Officers [CCSSO], 2022; Ständige Kon-
ferenz der Kultusminister der Bundesrepublik 
Deutschland [KMK], 2012, 2022). The nature of 
these arguments is left quite open. In the German 
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context, they reach from visual argumentation in 
lower secondary to formal proof at the end of up-
per secondary school (KMK, 2012, 2022), where 
proof is approached through a continuous increase 
in formality and deductive rigor over time (Brunner, 
2014). Consequently, as common in many interna-
tional contexts as well, proving as the highest form 
of mathematical argumentation appears as a mar-
ginal and extraordinarily difficult activity through-
out students' school careers (Bausch et al., 2014; 
Fesser & Rach, 2022; G. Harel & Sowder, 1998). 
Instead, visual elements and generic examples usu-
ally play an important role (Kempen, 2018). 

Compared to the use of the established models, 
there is a first advantage of the UMPC to be noted 
here: Its roots in cognitive-psychological reading 
research allow to easily incorporate how readers 
deal with information from various visualizations 
and the text simultaneously. The PISA reading 
framework considers continuous texts, non-
continuous texts (lists, diagrams, etc.), and mix-
tures of both (OECD, 2019). Adopting this approach 
to the reading of proof could lead to more sophisti-
cated operational indicators by taking into account 
that the difficulty of proof comprehension tasks 
rises with a growing number of sources to be con-
sidered. Thus, the UMPC responds to the rising 
interest of mathematics education researchers in 
visual (elements of) proof (R. Harel & Marco, 2023). 

A second strength of the UPMC, especially com-
pared to the RCGP model, is the global text level it 
contains. As already discussed, most advanced ar-
guments and proofs on the secondary level have a 
rather simple, chained argumentative structure 
(Selden, 2012). Nevertheless, this does not diminish 
the importance of the global text level in secondary 
contexts, even if not all operational indicators such 
as summarization or the modular structure are 
appropriate. Completeness of the (simple) argu-
mentative chain as well as the generality of the 
mathematical statement need to be addressed on 
the secondary level (KMK, 2022; Yang & Lin, 2008) 
and this requires the global text level as I have dis-
cussed in Section 3.1.  

A third argument for the UMPC's usefulness in sec-
ondary school contexts is the relevance of the level 
beyond the text for mathematics that fosters gen-
eral education. This claim requires first of all to 
investigate the contribution of proof to general 
education. According to Heinrich Winter (1995), 
mathematics education becomes meaningful when 
it enables students to 

1) notice and to understand phenomena of the world 

that (should) concern everyone in a specific way, be it 

from nature, society or culture, 

2) get to know and to comprehend mathematical ob-

jects and facts, represented in language, symbols, pic-

tures, and formulas, as mental creations and a deduc-

tively structured system of its own kind, and 

3) gain heuristics and problem-solving strategies that 

may be applied in- and outside of mathematics when 

dealing with mathematical exercises. (Winter, 1995, 

p. 35, translated, V. S.) 

All of these three basic experiences have a distinct 
connection to proofs: Learning to prove is consid-
ered to contribute substantially to the learning of 
heuristics, especially to logic and deductive reason-
ing (Grieser, 2018; Reid & Knipping, 2010, pp. 79-
80; Vohns, 2016). This does not only include the 
construction of convincing arguments (as part of 
Winter's third experience) but also comprehending 
and questioning existing arguments (as part of Win-
ter's third and first experience). Following Toul-
min's (2003) argumentation theory, an argumenta-
tive step itself establishes conviction to a certain 
degree expressed in a modal qualifier. Thus, the 
local text level needs to be addressed carefully 
when teaching students how to argue convincingly. 
This is already suggested in the RCGP model and in 
many national curricula that focus first on single 
arguments and later on the chaining of steps (CCS-
SO, 2022; KMK, 2022; Yang & Lin, 2008). 

Toulmin (2003) further draws our attention to the 
data, warrants, and backings suitable within an 
argumentational field. Focussing on the nature of 
warrants and data acceptable within mathematics, 
i.e. from a local text level, students might experi-
ence the intrinsic norms of mathematical reasoning 
as part of Winter's second basic experience. In-
deed, any insight into mathematics as a deductively 
ordered system of its own kind with time-
independent truth may not take place without ex-
posure to proof (Rolfes et al., 2022; Weber, 2012). 

Mathematical statements may serve as warrants 
only after they have been proven themselves (or 
been accepted as axioms). Thus, proofs "organize 
logically unrelated individual statements which are 
already known to be true, into `a coherent unified 
whole´" (De Villiers, 1990, p. 21). In doing so, proofs 
help to structure axioms, definitions, and theorems 
on both a local and a global level of the mathemati-
cal world. This systematization includes experienc-
ing the fruitfulness and scope of certain mathemat-
ical statements – even if it takes place only locally 
without reference to certain axiomatic systems 
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(Kempen, 2018). It is echoed in the RCGP level of 
encapsulation, where Yang and Lin (2008) refer to 
the distinction of different premises from similar 
propositions. Thus, getting to know mathematics as 
a deductively structured system of its own kind may 
start from the local perspective, but will inevitably 
lead to proof comprehension on the level beyond 
the text.  

Finally, experiencing a need for proof fosters critical 
thinking, which is a precondition of responsible 
citizenship. It is inherent, for example, in our mod-
ern judicial proceedings, where only complete 
chains of evidence allow discarding the presump-
tion of innocence (Vohns, 2016; Winter, 1995). 
Therefore, engaging with mathematical proof might 
contribute to general education by understanding 
and challenging the argumentative culture(s) sur-
rounding each of us. Standing above the obstacles 
of modal, i.e. (un)certain conclusions, mathematical 
proofs might not be representative of everyday 
argumentation. Yet for many people and many 
argumentative fields, such as medicine, law, or 
ethics, mathematical proofs serve as an ideal model 
for what to consider as proven and how to cope 
with uncertainties (Toulmin, 2003, p. 118). Again, 
this touches on the evaluative facet of the level 
beyond the text. 

Another reason to focus on proof evaluation and 
therefore consider the level beyond the text in sec-
ondary education is suggested by Reid and Knipping 
(2010). They argue that on a level of general educa-
tion, students shall be 

prepared not to practice in the field [of mathematics, 

V.S.], but rather to appreciate the products of it. In 

that case a focus on proof reading rather than writing, 

and a greater emphasis on roles such as aesthetics 

might be called for. (p. 222) 

As mathematicians consider mathematical beauty 
in terms of a proof's innovative power, its creativi-
ty, and the use of surprising components, this kind 
of perception requires, for example, comparisons of 
different proofs and a sense of the scope of proving 
methods, thus calling upon the level beyond the 
text (Inglis & Aberdein, 2014). 

4.2.2 Reading proofs in university mathematics 

The presentation of the AMPC and its extension by 
Neuhaus-Eckhardt (2022) in Figures 2 and 3 already 
revealed that both models consider the micro-
levels as local dimensions of proof comprehension. 
Their importance for proof comprehension among 
university mathematics is undoubted and has been 
demonstrated empirically several times: Bauer and 

Skill (2020) asked third-semester students in a 
more-dimensional analysis course in the middle of 
a proof presentation how it might continue. A third 
of all given ratings fell on one of four possible an-
swers that assumed the statement to be proven. 
Similarly, Zazkis and Zazkis (2015) report that pre-
service teachers in their last term still face difficul-
ties in distinguishing the claim to be proven from 
supporting data, confirming the need for more at-
tention to the logic micro-level in a university con-
text.  

The novelty of the UMPC in contrast to the existing 
models of proof comprehension for the tertiary 
level is to consider the micro levels as individual 
levels (again). Using the same text levels describing 
proof comprehension in secondary and tertiary 
education offers advantages especially for research 
in the transition from secondary to tertiary level, 
which is a field of special interest for many mathe-
matics educators (Bausch et al., 2014; Gueudet, 
2008; Kempen, 2018).  

Another argument shows why the semantic micro-
level is at least as important as the logical one in 
the context of university mathematics. In the still 
predominant way of teaching university mathemat-
ics in a definition-theorem-proof format, proofs 
become the main carriers of mathematical 
knowledge and gain an epistemic function by intro-
ducing the reader to proving methods, mathemati-
cal concepts, and strategies (Davis et al., 2012; 
Kempen, 2018; Rav, 1999). This epistemic role of 
proof is prominent in the AMPC's extension by 
Neuhaus-Eckhardt (2022), as shown in Section 2.3. 

But the mathematical knowledge carried within 
proofs is not restricted to their epistemic function: 
Proofs on the tertiary level also deepen the under-
standing of the thematic field and serve in creating 
new and systematizing existing knowledge (Davis et 
al., 2012, p. 167; Kempen, 2018). As Spratte (2022, 
2023) shows, many students of university mathe-
matics claim to read proofs for the sake of under-
standing mathematical concepts in the thematic 
field better, e.g. to understand definitions. Implicit-
ly referring to the explanatory function of proof, 
the students make use not of the proof methods to 
transfer them to another context, but of one of the 
proof's semantic ingredients. Similar to an encapsu-
lated comprehension of the proven statement, the 
deepened knowledge about the definition reaches 
beyond the text, for example when evaluating the 
usefulness of certain equivalent definitions or iden-
tifying critical examples for the notion under con-
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sideration. Because understanding a proof (as un-
derstanding any text) is a circular process, this 
knowledge is probably applied when semantically 
decoding the same notion within the text later 
again. Thus, in a cyclic comprehension process, 
deepened content knowledge and pre-knowledge 
seem to act indivisibly and therefore connect to 
both the semantic micro-level and the level beyond 
the text. 

Further, Reid and Knipping (2010, p. 76) and Weber 
and Mejía-Ramos (2011) give examples of proofs 
actually showing an even stronger statement than 
originally given. The reader may discover the 
stronger theorem when reading the proof and re-
flecting on the importance of certain assumptions, 
working mainly on a local or global text level to 
expand the theorem. Yang and Lin (2008) also call 
upon the extension of a theorem by relaxing its 
premises or considering specific cases to deduce 
more specific statements. Reviewing the compo-
nents of proof comprehension in Figures 2 and 3 
under this perspective, I conclude that proof com-
prehension tests on the tertiary level so far have 
narrowed the role proofs play for mathematics to 
the functions of validation, explanation, and the 
epistemic function, resulting in an overemphasised, 
yet narrowed global level and level beyond the text. 
Discovering mathematics when reading a proof and 
evaluating the text are two major aspects, but not 
the only ones underestimated in the ongoing dis-
cussion.  

4.2.3 Reading proof in university service courses 

Little is known so far about lecturers' rationals to 
(or not to) present proofs in their service mathe-
matics lectures1, for example in engineering, phys-
ics, or economy. Besides the explanatory function 
and an insight into mathematics as a deductivly 
ordered system, Bauer and Skill (2020) mention the 
link between mathematical models and their appli-
cation that is revealed in proofs as one possible 
reason. Analogously to the discussion on proofs in 
general education contexts in Section 4.2.1, these 
reasons turn the attention to the level beyond the 
text. The explanatory function of proof further calls 
upon central properties and ideas of the proof, thus 
operating on a global text level (Steiner, 1978). The 
level of local coherence and the micro levels seem 
to play a minor role in service mathematics. Never-
theless, this hypothesis lacks an empirical founda-
tion, yet. 

4.3 Limitations and open questions 

Despite the numerous benefits of the UMPC dis-
cussed above, there are certain limitations inherent 
in the model and several open questions remain. As 
already mentioned frequently, the UMPC’s appro-
priateness to empirical data still has to be shown. 
Another limitation is the restriction to written 
proofs without explicitly including multiple sources 
such as diagrams accompanying the proof. I have 
discussed in Section 4.2 that the UMPC might be 
adapted to include visualizations in line with the 
PISA reading framework, but have not presented a 
specific operationalization or detailed description 
yet. 

A third constraint is implied by the work of Ahmad-
pour et al. (2019) as presented in Section 4.1: The 
UMPC assumes that the reader receives the proof 
in terms of its deductive argumentative structure. 
This kind of reading corresponds to only one of the 
three paths suggested by Ahmadpour et al. (2019). 
How well the UPMC fits, for example, a reading 
relying on form and symbolic elements of a proof is 
an open question. 

The probably greatest limitation lies in a hidden 
assumption: As common among researchers in 
mathematics education, the UMPC refers to proof 
comprehension as a single construct, i.e. stable 
over different mathematical fields.2 But does read-
ing a proof from algebraic number theory follow 
the same (or at least sufficiently similar) processes 
as one from stochastics? The generality of the 
UMPC's foundations seems to apply to any piece of 
mathematics, but further investigation and empiri-
cal evidence are needed. 

5.  Conclusions 

Throughout this paper, I have summarized different 
concepts of proof comprehension into a unified 
model. The model is based on Toulmin's argumen-
tation theory, text levels from cognitive-
psychological reading research, and preliminary 
works on proof comprehension by Yang and Lin 
(2008), Mejía-Ramos et al. (2012) and Neuhaus-
Eckhardt (2022). It defines proof comprehension as 
a coherent mental model for a given written proof, 
which is the result of a cyclic reading process. Thus, 
I closely related proof validation and proof evalua-
tion to the UMPC as the results of proof reading 
processes with different intentions that also lead to 
the building of a mental model of the proof under 
consideration.  
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Different functions and roles of proof in secondary 
and tertiary educational contexts were discussed in 
light of the UMPC and revealed its additional value 
to teaching and research. Especially, discussions on 
proof comprehension at the secondary level need 
to include both the global text level and the level 
beyond the text, which has not been discussed in 
the light of general education so far. Similarly, the 
AMPC as the so-far predominant model of proof 
comprehension on the tertiary level respects the 
level beyond the text only in a limited way. It re-
stricts to the proof method as part of the epistemo-
logical proof function and underestimates the con-
sequences of proof for the knowledge of the the-
matic field. It also lacks evaluative aspects of proof 
reading, which play an important role in reading 
processes of mathematical experts (Mejía-Ramos & 
Weber, 2014). The unified model, therefore, allows 
a more integral way to look at the reading of proof 
than the models found in the existing literature. 

Comments 
1 The importance of proof as the actual bearers of mathemati-

cal knowledge (Weber & Mejía-Ramos, 2011) leads to a 
prominent role of proof in mathematics education at the ter-
tiary level – at least for students in mathematics programs or 
teacher programs for (upper) secondary education, who are 
supposed to learn how to prove in their first term(s) (Kemp-
en, 2018). Throughout, I will talk about these students as uni-
versity mathematics students. Several non-mathematics uni-
versity programs also include some mathematics education, 
such as mathematics for engineering, where the focus is less 
on proof and more on theorems, application, and algorithms 
(Bauer & Skill, 2020). Students in these courses are consid-
ered as service mathematics students.  

2 The assumption that proof comprehension is a unidimension-
al construct is not trivial. The appropriateness of one model 
of proof comprehension among various mathematical subdis-
ciplines is often implicitly assumed. Davies (2020) discusses it 
in more detail: Mejía-Ramos and Weber (2016) developed 
tests based on the AMPC for two numbertheoretical proofs 
and one on the incountability of an interval. They report high 
correlations between any two of these tests and deduce that 
"proof comprehension can be a meaningful single-
dimensional construct" (p. 5). To assume unidimensionality 
also fits the failed attempts to separate local from global di-
mensions of proof comprehension as discussed in Section 2.2. 
The assumption further is forstered by the data provided by 
Davies (2020). 

3 Throughout this paper, the reduced version of the Toulmin 
scheme is used to visualize different levels of proof compre-
hensions. In Figures 1 to 4, a hexagon represents a semantic 
piece of information of unknown logical status. White rectan-
gles represent data, while black ones symbolize claims. Black 
diamonds are explicitely given warrents, dashed white dia-
monds are used for implicit warrants. Ovals indicate former 
claims that further serve as data for a subsequent argumen-
tative step. The symbols follow Knipping and Reid (2019). 

4 As Österholm (2008) points out, the lack of redundancy is not 
specific to proof, but characteristic for any technical prose. 

5 Note that an operationalization requires a ready theoretical 
construct and aims to make it measurable. As all three con-
tributions discussed in Sections 2.1, 2.2, and 2.3 provide se-
vere contributions to the concept of proof comprehension 
themselves, they should not be considered as mere opera-
tionalizations. 

6  At first glimpse, the RCGP model might not seem very specific 
to geometry. Nevertheless, I already pointed out how it deep-
ly relies on Duval's (1998) levels of information processing 
when solving geometric problems. Also, some of the RCGP's 
contents implicitely assume that the proof can be visualized. 
This holds for almost any proof from geometry on the sec-
ondary level, but might be non-trivial for proofs from other 
mathematical domains. 

7 Neuhaus-Eckhardt (2022) emphasized that not all compo-
nents may be suitable for every proof, e.g. if a proof is rather 
short and contains no modules. For the theoretical mental 
model, the proof-text determines the adequacy of the com-
ponents, while in the individual mental model, also individual 
learner's resources, his or her reading goals and the sociocul-
tural context influence the components' adequacy. 

8 "The PISA 2018 reading framework considers writing to be an 
important correlate of reading literacy. However, test design 
and administration constraints prohibit the inclusion of an 
assessment of writing skills, where writing is in part defined 
as the quality and organization of the production. However, a 
significant proportion of test items require readers to articu-
late their thinking into written answers. Thus, the assessment 
of reading skills also draws on readers' ability to communi-
cate their understanding in writing, although such aspects as 
spelling, quality of writing and organization are not measured 
in PISA." (OECD, 2019, p. 49) 

9 Neuhaus-Eckhardt (2022) did not specify the relation be-
tween the main idea(s), the proof framework, and the proof 
method. A clear distinction between those components was 
not her focus; she rather included the component as the 
transferable proof method could differ from the main idea 
and the proof framework. 

10 Indeed, the RCGP's facet of Generality relies on the complete 
proof but stays within the proof itself. It therefore corre-
sponds to the global text level. The facet of Application / Ex-
tension, originally placed next to Generality, goes beyond the 
proof by considering new proof construction processes.  

11 To identify the text levels as latent variables in a factor ana-
lysis for a proof comprehension test still seems rather unlikely 
to the author of this paper. Even though these levels are reg-
ularly used to construct valid tests for (general) reading com-
prehension, the latent variables underneath these tests are 
for example the individual's prior knowledge or use of read-
ing strategies. See, for example, Cromley et al. (2010). 

12 Expectations regarding an empirical confirmation should not 
be set too high anyway as "all models are approximations. 
Essentially, all models are wrong, but some are useful." (Box 
& Draper, 1987, p. 424) 

13 A detailed overview of eye tracking in mathematics educa-
tion research including a critical discussion on the methodol-
ogy is given by Strohmaier et al. (2020). 
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