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Zusammenfassung: Für die vorliegende qualitative 

Studie wurden interaktive Arbeitsblätter entwickelt 

und im Rahmen einer Intervention zur Förderung 

funktionalen Denkens in einer 7. Klasse in Österreich 

eingesetzt. Diese Materialien basieren auf typischen 

Problemen zu funktionalem Denken und visualisieren 

den Darstellungswechsel zwischen situativer Dar-

stellung und Funktionsgraph. Die Datenerhebung 

stützte sich auf diagnostische Tests und Interviews 

sowie Beobachtungsdaten. Die Forschungsinteres-

sen umfassen insbesondere die intuitiven Vorstellun-

gen der Lernenden sowie die Frage, ob und auf wel-

che Weise dynamische Materialien diese Vorstellun-

gen beeinflussen können. In diesem Beitrag wird ein 

Überblick über das Forschungsprojekt gegeben so-

wie einige Ergebnisse vorgestellt. 

 

Abstract: This paper reports on a research project 

about using interactive worksheets designed based 

on typical student difficulties concerning functional 

thinking. The dynamic materials focus on the repre-

sentational transfer between iconic situational and 

graphical representation and were integrated in an 

intervention with a 7th grade Austrian secondary 

school class to foster functional thinking. Several 

types of data were collected through diagnostic tests, 

diagnostic interviews, and observations during the 

intervention. The qualitative study particularly pays 

attention to the intuitive conceptions of students and 

whether and in what ways interactive worksheets 

may influence students’ conceptions. In this paper, a 

general overview of the research project as well as 

some key findings are presented. 

1.  Introduction 

The concept of function is an essential element of 

mathematics and functional thinking an important 

idea in mathematics education. Numerous research-

ers have widely investigated students’ problems and 

conceptions in the field of functions (see section 2.2). 

In addition, the development of new technologies as-

sisting the learning of functions resulted in the emer-

gence of new aspects related to functional thinking. 

Dynamic mathematics software and resources based 

on this technology offer new opportunities for multi-

ple, dynamically linked representations of functions. 

Therefore, it is important to examine how such dy-

namic representations influence students’ learning 

and conceptions related to functions. 

In this research project, I developed interactive work-

sheets applying the dynamic mathematics software 

GeoGebra and integrated them into a qualitative 

study to investigate this question. These materials 

were designed based on typical students’ problems 

and misconceptions outlined in literature.  They ad-

dress students’ conceptions and focus on the repre-

sentational transfer between iconic situational model 

and graphical representation.  

This paper outlines a dissertation project (Linden-

bauer, 2018). It provides a general and detailed over-

view of the theoretical background and the methodo-

logical considerations. In addition, it introduces the 

designed interactive worksheets and summarizes 

some key findings. Detailed results should be pre-

sented in upcoming papers.  

2.  Theoretical background  

The following sections outline the theoretical back-

ground of the presented research project and discuss 

functional thinking, student difficulties and concep-

tions concerning functions, and technology-related 

issues. 

2.1  Functional thinking 

Functional thinking is an important concept in math-

ematics education. Already over a century ago, in the 

reform proposals of Merano, for the first time the ed-

ucation for the habit of functional thinking was made 

explicit as a special task (Gutzmer, 1908, p. 104). 

Functional thinking in this context is an open and 

vague term, rarely attempted to be defined at the be-

ginning of the 20th century. In the sense of functional 

thinking in Merano’s reform, the idea of functional 

thinking is supposed to be a thinking habit that aimed 

to “penetrate” and be central of mathematics educa-

tion and not only discussed as a part of function the-

ory (Krüger, 2000). 

According to Vollrath (1989), so far there exist only 

few attempts to define the term functional thinking 

because obviously it is considered to be a meaningful 

and simple idea and it was only seldom that people 

find it necessary to define. Later, he describes func-

tional thinking as a typical way of thinking when 

dealing with functions (Vollrath, 1989). In contrast to 

the general notion of functional thinking in the re-

form of Merano, the concept of functional thinking is 

narrowed down by Vollrath and clearly situated 



math.did. 43(2020)1 

 2 

within mathematics, especially related to the concept 

of function, instead of being treated as a general con-

cept. 

Vollrath (1989) states three aspects of functional 

thinking. Also, vom Hofe (2003) refers to three 

“Grundvorstellungen” concerning the concept of 

function. “Grundvorstellungen” are “mental models 

which are carrying the meaning of mathematical con-

cepts or procedures” (vom Hofe, Kleine, Blum, & 

Pekrun, 2006, p. 142). Usually, not just one but sev-

eral such mental models describe a mathematical 

concept. The development and connection of them 

are important for understanding a specific concept. 

Concerning the function concept, vom Hofe (2003) 

lists mental models addressing the notions of relation, 

co-variation or change, and object (object as a 

whole). They are corresponding to Vollrath’s (1989, 

pp. 8–16) following three aspects: 

1) By functions one describes or creates connec-

tions between variables: one variable is then re-

lated to another so that one variable is viewed as 

dependent of the other. 

2) By functions one understands how changes of 

one variable affect a dependent variable. 

3) By functions one considers a given or generated 

context as a whole. 

Malle (2000) refers to Vollrath’s (1989) work and 

specifies the following aspects in a slightly altered 

version without including the idea of Vollrath’s orig-

inal third aspect (function as a whole). This perspec-

tive is similar to Confrey and Smith (1991), who view 

functions either as correspondence or as co-variation 

between two quantities. 

• Relational aspect: Each argument x is associated 

with exactly one function value f(x). 

• Co-variational aspect: If the argument x is 

changed, the function value f(x) will change in a 

specific way and vice versa. 

In this context, the relational aspect corresponds to 

the first and the co-variational aspect to the second 

aspect mentioned by Vollrath (1989) and vom Hofe 

(2003). The relational aspect represents a static per-

spective of functional thinking whereas the co-varia-

tional aspect describes dynamic processes.  

The aspects mentioned so far can be summarized 

within Vollrath’s three aspects of functional thinking. 

In the following, the first of Vollrath’s aspects is re-

ferred to as relational aspect, the second as co-vari-

ational aspect, and the third as object aspect. 

In this research project, I follow Vollrath’s (1989) de-

scription of functional thinking. It relates to establish-

ing basic conceptual understanding of the function 

concept and to students’ conceptions. The object as-

pect will further not be relevant for this project, as it 

is usually developed by older students (e.g., Brei-

denbach, Dubinsky, Hawks, & Nichols, 1992). Tasks 

explicitly addressing the object aspect – as for exam-

ple outlined by Lichti and Roth (2019) – are not an 

integral part of the Austrian lower secondary educa-

tion curriculum for grade 7 students, as they are in an 

early phase of learning to work with functions.  

Functions and the different aspects of functional 

thinking can be represented in various ways. The fol-

lowing semiotic representations, which emphasize 

different aspects of functional thinking, are com-

monly used: verbal (as description of a situation), nu-

meric (as table), graphic (as function graph), and al-

gebraic (as formula or equation) (Büchter & Henn, 

2010). The verbal representation can be extended to 

another relevant type, the situational representation, 

which could be either a verbal description or iconic 

representation of a real situation without use of math-

ematical symbols or structures (Bayrhuber, Leuders, 

Bruder, & Wirtz, 2010).  

Vogel (2007) stresses that multiple representations of 

functions are able to represent aspects of functional 

thinking (relational as well as co-variational aspect) 

externally, and they have the potential to support stu-

dents’ ability to interpret functions. However, repre-

sentations have to be considered critically as they in-

fluence the way of thinking, they may constrain stu-

dents’ thinking about the concepts involved and are 

interpreted by students according to their prior 

knowledge (Vosniadou & Vamvakoussi, 2006). 

2.2  Conceptions and problems concerning 
functional thinking 

Functional thinking is an important concept in math-

ematics education. Literature review reveals various 

problems and misconceptions in the field of func-

tional thinking.  

2.2.1  Conceptions 

A significant part of research in mathematics educa-

tion is concerned with examining students’ concep-

tions, focusing on “Grundvorstellungen” (or mental 

models), misconceptions, conceptual change, and 

preconceptions. Such research is established on the 

assumption that learners develop their own individual 

conceptions based on already existing knowledge and 

structures acquired in school or everyday life (Voll-

stedt, Ufer, Heinze, & Reiss, 2015), and is thus based 

on a constructivist perspective. 

In research papers related to conceptions, various 

terms are used to describe students’ conceptions such 

as preconceptions, prior conceptions, alternative con-

ceptions, misconceptions, ideas, or naive theories 
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(Limón, 2001; Smith, DiSessa, & Roschelle, 1994). 

Although these terms are used for different purposes, 

their common feature is that they are stressing the dif-

ference between acknowledged scientific or mathe-

matical concepts and students’ individual concep-

tions and ideas (Gurel, Eryilmaz, & McDermott, 

2015). Several research results from different fields 

of mathematics education indicate that misconcep-

tions can cause systematic errors by students (Vosni-

adou & Verschaffel, 2004). 

For this research project, the terms error, conception, 

preconception, and misconception are relevant be-

cause this study focuses on students’ conceptions in 

functional thinking.  

Sfard (1991) defines the terms concept and concep-

tion in the following way: 

[T]he word “concept” . . . will be mentioned whenever 

a mathematical idea is concerned in its “official” form 

– as a theoretical construct within “the formal universe 

of ideal knowledge”; the whole cluster of internal rep-

resentations and associations evoked by the concept – 

the concept’s counterpart in the internal, subjective 

“universe of human knowing” – will be referred to as a 

“conception”. (p. 3) 

In this sense a concept is an officially acknowledged 

mathematical object whereas a conception is an indi-

vidual, subjective construct within a person’s mind 

based on that mathematical object. Related to Sfard’s 

(1991) idea of conception, Gorodetsky, Keiny, and 

Hoz (1997) explain conception as a “mental structure 

that includes also the person’s beliefs and basic pre-

suppositions . . . developed from theoretical studies, 

from practice and from interactions with the world 

and society” (p. 424). These researchers include ex-

plicitly learner’s preconceived ideas and beliefs as 

well as provide a brief explanation of how concep-

tions evolve. 

Hadjidemetriou and Williams (2002) draw a distinc-

tion between errors and misconceptions. An error (or 

mistake) is an incorrect or inaccurate response to a 

question, or more detailed, utterances, facts or pro-

cesses that deviate from an established norm 

(Hadjidemetriou & Williams, 2002; Prediger & Witt-

mann, 2009). Misconceptions can be the reasons for 

students’ errors; Vosniadou and Verschaffel (2004) 

interpret misconceptions as a “knowledge system 

consisting of many different elements organized in 

complex ways” (p. 447). Misconceptions are errone-

ous conceptions or correct conceptions not appropri-

ately used and are part of the knowledge structures of 

a person. They may be the result of instruction, the 

influence of everyday experience or an overgenerali-

zation of a basically correct conception (Hadjide-

metriou & Williams, 2002; Leinhardt, Zaslavsky, & 

Stein, 1990; Vosniadou & Verschaffel, 2004). 

Furthermore, there is a distinction between pre- and 

misconceptions. Preconceptions can be described as 

conceptions based on intuition and everyday experi-

ence developed prior to systematic instruction 

whereas misconceptions are the result of instructional 

influence (Clement, Brown, & Zietsman, 1989; Vos-

niadou & Verschaffel, 2004). Synonymous to pre-

conception, I will use the term intuitive conception to 

stress the influence of everyday knowledge and that 

students are unaware of such conceptions. 

Students’ misconceptions can lead to problems and 

learning difficulties. The next section contains a de-

scription of different students’ problems in the area 

of functional thinking interesting for lower secondary 

education. 

2.2.2  Student problems 

For comprehensive students’ understanding of the 

concept of function, the development and training of 

all three aspects of functional thinking is important. 

According to Busch, Barzel, and Leuders (2015b), 

these aspects also affect the emergence of students’ 

misconceptions or errors. Malle (2000) states that it 

is important for students to develop relational and co-

variational aspects already in grades 5 to 8, especially 

in connection with interpretations of functions in a 

real-world context. He considers it difficult to catch 

up on these mathematical skills if they are neglected 

in lower secondary education. 

Several authors report on the dominance of the rela-

tional aspect in teaching (Confrey & Smith, 1991; 

Leinhardt et al., 1990; Malle, 2000; Stölting, 2008). 

Hoffkamp (2011), for example, states the over-em-

phasis of the relational aspect as related to a domi-

nance of numerical approaches to the function con-

cept by using tables. Also, modern definitions of the 

concept of function are based on the idea of corre-

spondence and thus emphasizing the relational as-

pect. In summary, one could assume that the rela-

tional aspect is the least difficult to learn. 

For these reasons, the situation is different for the co-

variational aspect. Already Goldenberg, Lewis, and 

O’Keefe (1992) emphasize the problem of regarding 

functions dynamically especially on static media 

such as paper. Let us consider the following typical 

task for students: How does the area of a circle 

change when the radius is doubled? This question 

emphasizes the co-variational aspect of the functional 

dependency between radius and area of a circle. It 

does not seem to be difficult to solve; however, em-

pirical results show that particularly the co-varia-

tional aspect is inaccurately or hardly developed by 

students although it is important to be able to work 

with functions in practice (De Bock, Verschaffel, & 
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Janssens, 1998; Malle, 2000; Hoffkamp, 2011). Ac-

cording to Malle (1993) the co-variational aspect is 

closely linked to the varying aspect of variables 

(Veränderlichenaspekt), which is also often hardly 

developed. 

An underdeveloped co-variational aspect is related to 

commonly used representations of functions. For ex-

ample, the representation as formula stresses the re-

lational aspect of functions. Additionally, in mathe-

matics education without use of technology, function 

graphs are often regarded only statically, which does 

not foster the dynamic view of the co-variational as-

pect. Leinhardt et al. (1990) suggest interpreting 

graphs of functions qualitatively in order to examine 

the co-variational aspect of functions. 

Students’ ability to flexibly use and change between 

representation registers is the foundation of mathe-

matical understanding of functions (Duval, 2006). 

Similarly, other researchers emphasize the im-

portance of the ability to switch back and forth be-

tween different representations, to identify and link 

the connecting elements as an evidence of conceptual 

understanding (Ainsworth, Bibby, & Wood, 2002; 

Bayrhuber et al., 2010; Leuders & Prediger, 2005). 

Various students’ difficulties in the context of func-

tional relationships are related to transfers between 

different kinds of representations such as verbal, nu-

meric, graphic, and algebraic. According to Duval 

(2006), many students’ problems in mathematical un-

derstanding are due to the complexity of conversions 

(transformations between representations of different 

registers). “Changing representation registers is the 

threshold of mathematical comprehension for learn-

ers at each stage of the curriculum” (Duval, 2006, p. 

128). Therefore, to understand functional dependen-

cies, the representational changes are of particular 

importance because at least two registers are in-

volved in such a mathematical activity (Duval, 2006; 

Nitsch, 2015).  

Especially representational transfers between graph-

ical representation and verbal description of a situa-

tion can be classified as particularly difficult, for ex-

ample, when students struggle with difficulties due to 

inadequate interpretation of everyday experience. On 

the one hand, this is justified by the fact that a situa-

tional description contains a high number of so-called 

fact gaps and confounding facts; on the other hand, 

these representational transfers require global instead 

of local interpretive activities, which are more prone 

to errors for students (Bossé, Adu-Gyamfi, & 

Cheetham, 2011). 

Further reasons for the particular difficulty of situa-

tional descriptions may be the influence of everyday 

experience on students’ conceptions (preconcep-

tions) as well as linguistic aspects. If the description 

of a situation is provided verbally, a certain under-

standing of text and further linguistic abilities are 

necessary for dealing with this kind of representation 

in problem solving processes (Prediger, 2013). 

The representational transfer between graphical and 

situational (verbal, iconic) representation is particu-

larly problematic; moreover, it is interesting in lower 

secondary education due to the prior knowledge of 

students. Therefore, I describe additional research re-

sults about problems related to the interpretation of 

graphs: graph-as-picture error and slope-height con-

fusion. 

A rudimentary developed co-variational aspect might 

lead, among other things, to a graph-as-picture error. 

Janvier (1981) and Clement (1985) were among the 

first to examine and discuss the error of treating a 

graph as a picture. This error occurs in various forms 

and means that students interpret a function graph as 

photographic image of a real situation instead of an 

abstract representation of the dependency of one 

quantity on another and their co-variation (Busch et 

al., 2015b; Clement, 1989; Hadjidemetriou & Wil-

liams, 2002; Schlöglhofer, 2000). 

Graph-as-picture errors are provoked accordingly by 

the represented context; therefore, some situations 

especially lead to misinterpretations of function 

graphs. Especially in the context of distance-time di-

agrams, function graphs are interpreted frequently in 

such iconic ways (Leinhardt et al., 1990; Schlöglho-

fer, 2000). 

Difficulties arise also in the interpretation of slope 

and growth, for example, if the point of maximum 

growth is confused with the largest function value. 

This is referred to as slope-height confusion (Clem-

ent, 1985, 1989). The confusion of slope and height 

indicates that students do not comprehend the con-

cept of slope and that they focus on the position of 

the function graph instead on the slope in the respec-

tive time period (Busch, Barzel, & Leuders, 2015a). 

Another problem for students is the so-called illusion 

of linearity. It means that linear or directly propor-

tional models are preferably used for the description 

of relations even if they are not applicable. For exam-

ple, some students’ quotes from the research project 

of Hoffkamp (2011, pp. 107–108) refer to this mis-

conception: “. . . the function has no slope, because if 

it would have a slope, it would be straight” 1
 (p. 107), 

or “graph is always . . . [student points on straight 

line]” 1
 (p. 108). 

Van Dooren, De Bock, Janssens, and Verschaffel 

(2008) additionally point out that “[s]tudents can ap-

ply particular characteristics and representations 
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without being aware that these are actually related to 

linearity and even without (fully) grasping the idea of 

linearity” (p. 315). This misconception evolves not 

just in the context of graphical representations of 

functions but also in other domains, such as non-pro-

portional arithmetic word problems; probabilistic 

reasoning; number patterns, algebra, and calculus; 

and geometrical reasoning (Van Dooren et al., 2008). 

According to De Bock, Van Dooren, Janssens, and 

Verschaffel (2007), this misconception is reasonably 

persistent, especially when it has to do with the en-

largement of two-dimensional figures (e.g., students’ 

belief that doubling the side length of a square lead 

also to a doubling in area), which is also related to the 

co-variational aspect of functional thinking. There 

exist different explanations for the appearance and 

persistence of the illusion of linearity. First, propor-

tional reasoning seems to be an intuitive knowledge 

based on early and repeated everyday experiences 

that is resistant to change and also influencing stu-

dents’ preconceptions. Second, classroom experi-

ences are also responsible for students’ overuse of 

linear and direct proportional models as frequent ex-

periences with the applicability of proportional mod-

els influence students’ conceptions and lead to inap-

propriate habits and beliefs about mathematical mod-

eling. Moreover, students’ gaps in specific content 

knowledge (e.g., fragmentary geometrical 

knowledge) may also play a role in errors related to 

the illusion of linearity (De Bock et al., 2007; Van 

Dooren et al., 2008). 

The outlined problems can cause students’ misinter-

pretations of functions and especially of graphs of 

functions. Although many international research re-

sults discussing functional relationships exist, there 

are only a few studies in the German-speaking re-

search community about students’ misconceptions 

and little research attending to students of lower sec-

ondary school (e.g., Nitsch, 2015; Busch et al., 

2015b; Bayrhuber et al., 2010). Particularly, a focus 

on lower secondary students’ individual conceptions 

seems to be missing. 

2.3  Use of technology 

During the past three decades, the development of 

technology and technology-based resources started to 

transform mathematics teaching and learning by of-

fering new opportunities. Although there were high 

hopes of mathematics education researchers in the 

late 1980s and early 1990s about technology integra-

tion into school education, these were not fulfilled. 

However, educational technology could offer new 

potentials for mathematics teaching and learning 

(Drijvers et al., 2016; Lavicza, 2010). 

Borba and Confrey (1996) point out that structures, 

processes and objectives of mathematics and mathe-

matics teaching change through the use of technology 

in mathematics education because mathematics does 

not exist independently of its forms of representa-

tions. Therefore, new technological environments 

provide new representational resources and types of 

representations, both with the potential to support dif-

ferent ways of mathematics teaching and learning 

(e.g., Morgan & Kynigos, 2014; Morgan, Mariotti, & 

Maffei, 2009). 

2.3.1  Dynamic representations 

Due to the technological developments, the possible 

semiotic representations are changing recently, these 

representations now also including dynamic and in-

terdependent forms. For example, mathematics soft-

ware can combine graphical and algebraic represen-

tations of functions in such a way that manipulating 

one representation immediately affects the other. 

Also, the graphics view in dynamic geometry soft-

ware enables users to drag, turn, enlarge or decrease 

representations of mathematical objects or view them 

from various perspectives. In essence, new techno-

logical environments offer the possibility to examine 

mathematical concepts with dynamically linked, 

multiple representations by not only displaying these 

representations but also by allowing various actions 

on them as well as connecting and translating be-

tween different representations (Arzarello, Ferrara, & 

Robutti, 2012; Moreno-Armella, Hegedus, & Kaput, 

2008). 

Morgan and Kynigos (2014) emphasize the potential 

of linked multiple representations of mathematical 

objects in enriching students’ conceptual understand-

ing. The ways students manipulate and interact with 

dynamic representations may significantly differ 

from working with static representations in a paper-

and-pencil environment. Additionally, manipulating 

representations influences and enriches mathematical 

conceptualization because these manipulations could 

lead to representational changes that in turn become 

part of these representations (Morgan et al., 2009). 

Of course, paper-and-pencil environments are also 

able to provide representations with dynamic proper-

ties, but dynamic media could allow representations 

to change over time, thus facilitating variation and 

examination of invariants of mathematical objects 

(Kaput, 1992; Arzarello et al., 2012). Therefore, dy-

namic representations seem to be a powerful tool for 

examining the co-variational aspect of functional 

thinking. Additionally, the feature of direct manipu-

lation of dynamic representations allows to compre-

hend and to examine connections between different 

semiotic representations as well as certain properties 

of the represented mathematical objects (Kieran & 
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Yerushalmy, 2004). Research results show the poten-

tial of dynamic representations in supporting concept 

development processes and fostering students’ con-

ceptual understanding (Heid & Blume, 2008; Hoyles, 

Noss, Vahey, & Roschelle, 2013). Lichti and Roth 

(2018), for example, examined whether functional 

thinking of sixth graders could be fostered better us-

ing real materials or computer-based simulations. 

The results of their pre-post-test-intervention study 

indicate that utilizing simulations seems to be more 

beneficial than working with real materials, espe-

cially regarding the co-variational aspect. 

The next paragraphs will provide a description of 

specific features of the utilized technology as well as 

their educational potential. 

2.3.2  Dynagraph representation 

The co-variational aspect includes the dependency of 

one variable on another and thus the dynamic per-

spective on functional dependencies. At present, the 

Cartesian coordinate system is predominant for 

graphical representations of functions in mathematics 

teaching and learning. Another possible graphical 

representation is based on software called Dyna-

Graph providing two parallel coordinate lines (with 

or without scaling) instead of two perpendicular axes 

(Goldenberg et al., 1992). In the following, I will re-

fer to this kind of coordinate system as dynagraph 

representation. 

In a Cartesian coordinate system, students may per-

ceive graphs of functions only as static “images” 

which may lead to a misinterpretation of graphs as 

pictures while the dynamic aspect of functions moves 

into the background. In contrast to representations in 

a Cartesian coordinate system, in a dynagraph envi-

ronment the independent variable x can actually be 

varied (e.g., by mouse-manipulation) and the corre-

sponding function value f(x) can be observed. Fur-

thermore, the variable and the function value are dis-

played separately and not fused like in Cartesian 

graphs (see Figure 1). Therefore, dynagraph repre-

sentations enable a more profound examination of the 

co-variational aspect (Goldenberg et al., 1992; Malle, 

2000). 

According to Goldenberg et al. (1992), dynagraphs 

are powerful tools to examine characteristic proper-

ties of functions, to analyze functions qualitatively 

and therefore to support the understanding of func-

tions. Dynagraphs are able to complement static rep-

resentations by adding a dynamic perspective, thus 

enriching the conceptual development in this domain. 

2.3.3  Dynamic mathematics software (DMS) 

For this research project, I decided to use GeoGebra, 

an open-source mathematics software for educational 

purposes, because GeoGebra is the most widely em-

ployed mathematics software in Austrian schools. 

GeoGebra (www.geogebra.org) is a dynamic mathe-

matics software (DMS) integrating a computer alge-

bra system (CAS) into a dynamic geometry system 

(DGS). Its potential lies in the ability to combine ge-

ometry, algebra, spreadsheets, statistics, and calculus 

(International GeoGebra Institute, 2017).  

The different windows of GeoGebra (e.g., algebra, 

graphics, geometry, spreadsheet) enable to connect 

different semiotic representations of mathematical 

objects. The representations of mathematical objects 

presented in different windows are linked dynami-

cally in such a way that changing one representation 

immediately affects the other(s). This feature allows 

teachers and students to explore and examine multi-

ple representations of mathematical objects (Hohen-

warter & Jones, 2007). 

 

 

Fig. 1:  Interactive worksheet “Dynagraph linear function”, https://ggbm.at/navMMXAP 

 

http://www.geogebra.org/
https://ggbm.at/navMMXAP
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Misfeldt (2011) describes the potential of GeoGebra 

with regard to Duval’s (2006) framework about se-

miotic registers by its feature to combine simultane-

ously different semiotic representations in separate 

windows. With respect to transfers between two rep-

resentations of different registers, which are espe-

cially difficult for students to achieve, dynamically 

linked multiple representations could provide a cog-

nitively different approach compared to static repre-

sentations in a paper-and-pencil environment. Fur-

thermore, the use of DMS may support students’ de-

velopment of functional thinking because it is suita-

ble to emphasize relational as well as co-variational 

functional aspects, the latter providing a dynamic 

perspective on functional dependencies (Falcade, La-

borde, & Mariotti, 2007). 

So far, quantitative research findings about the use of 

technology in teaching reveal at best moderate effects 

on students’ learning achievements (Drijvers et al., 

2016). Results concerning dynamic representations 

appear to be more promising because these represen-

tations can support students in understanding mathe-

matical concepts (Hoyles et al., 2013).  

The question remains, why technology-based mate-

rial might be supportive and what happens in stu-

dents’ minds when they are working with interactive 

dynamic representations. Therefore, we need to ex-

amine in more detail the influence of technology on 

students’ individual conceptions and the opportuni-

ties technology may offer to support students’ devel-

opment of mathematical understanding. 

2.3.4  Research questions 

Various researchers (e.g., Leuders & Prediger, 2005; 

Vosniadou & Vamvakoussi, 2006) suggest introduc-

ing mathematical concepts at an earlier stage in math-

ematics education in order to help students in build-

ing a diverse concept image and to avoid that intui-

tive conceptions develop to misconceptions. This led 

to my research interest in students in an early phase 

of learning functions. In Austria, this group is repre-

sented by students of grade 7 and beginning grade 8 

(age 12 to 13). Students of these grades have already 

learned how to interpret Cartesian coordinates; there-

fore, they are able to study graphical representations, 

but they are not accustomed to the concept of the 

function and have only little experience with differ-

ent functional relationships. 

The literature review draw attention to the following 

empirical research questions of the presented re-

search project. As I am especially interested in the in-

fluence of technology-based dynamic representations 

on the students’ conceptions, these conceptions have 

to be examined first. Consequently, the first research 

question is: 

1) What different conceptions, with particular atten-

tion to pre- and misconceptions, emerge concern-

ing functional thinking of students of lower sec-

ondary education in an early phase of learning 

functions (grades 7 to 8)? 

The aim of the first question is to reveal the range of 

various conceptions of students at grade 7 concerning 

tasks addressing problems as outlined in section 2.2. 

Furthermore, I focus on preconceptions, which may 

develop into misconceptions, and especially different 

levels of conceptual understanding concerning tasks 

addressing graph-as-picture errors, distance-time di-

agrams addressing the slope-height confusion, and il-

lusion of linearity in tasks related to the enlargement 

of two-dimensional figures. 

So far, quantitative studies reveal at best moderate ef-

fects on students’ achievement, but research con-

cerned with dynamic representations seems to be 

more promising. However, we need to understand 

what happens with students’ conceptions when they 

are working with this kind of technology-based ma-

terial. Are such materials able to support students? 

And if yes, what happens in detail? As the literature 

review reveals a lack of qualitative research about the 

influence of dynamic materials on students’ concep-

tions at this age, these considerations lead to the sec-

ond research question, which seeks to investigate any 

influence of working with the interactive materials on 

students’ conceptions and comprises following as-

pects: 

2) In which ways do students of lower secondary 

education utilize the designed interactive materi-

als? How do students of lower secondary educa-

tion perceive and interpret information presented 

in the dynamic materials? What are the potentials 

of the interactive materials in supporting stu-

dents’ conceptual development regarding the 

presented tasks and what kind of problems (e.g., 

misinterpretations) could be involved? 

The second question includes a broad approach for 

identifying main factors influencing the learning pro-

cess, difficulties to be aware of (e.g., misinterpreta-

tions of presented information), and also possible po-

tentials of dynamic materials. 

In the next section, the applied dynamic materials are 

described in more detail. 

3.  Dynamic materials 

These dynamic materials were designed to foster 

functional thinking, especially to support students in 

translating between situational and graphical repre-

sentations. Basically, the materials are intended to be 

utilized in regular classroom settings, in which the 

materials could either be applied alone or combined 
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together. The accompanying tasks should encourage 

students to explore the linked representations, more 

detailed to verbalize observations, to consider ques-

tions and discuss them in pairs, to make conjectures 

and check them, and to reason answers. In general, 

the tasks should encourage students to analyze the 

presented functional dependency first qualitatively 

and then quantitatively including questions address-

ing the relational and co-variational aspects. 

A collection of original German-language interactive 

worksheets used during data collection in the re-

search process can be found at 

https://ggbm.at/EFVg7W8V; the translated English 

version can be retrieved here: 

https://ggbm.at/ftqpETqJ. 

3.1  Basic design considerations 

Based on the problems and examples related to stu-

dents’ conceptions (see section 2.2), several interac-

tive worksheets using the dynamic mathematics soft-

ware GeoGebra were designed reflecting various de-

sign criteria and principles (e.g., Hohenwarter & 

Preiner, 2008; Mayer, 2009).  

Due to the prior knowledge of selected students (ex-

periences mainly with distance-time diagrams, direct 

and inverse proportionality including their graphical 

representations but none with the explicit function 

concept), these worksheets primarily address the rep-

resentational transfer between iconic situational 

models and graphical representations, a transfer that 

is particularly problematic (see section 2.2). This cor-

responds also to an idea of Leuders and Prediger 

(2005) that algebraic representations (equations of 

functions) should not be introduced too quickly. The 

main idea is to provide learning experiences in an 

early phase of learning functions possibly preventing 

the development of intuitive conceptions to miscon-

ceptions. 

Dynamically linked, interactive representations have 

the potential to emphasize connections between both 

representations as well as functional aspects – espe-

cially the co-variational aspect. An automatic trans-

lation takes place so that the learners can concentrate 

on the complementary information provided by the 

individual representations. The iconic situational rep-

resentation serves mainly as constraining representa-

tion for the less familiar graphical representation so 

that students may learn how to interpret graphs. 

3.2  Examples 

In sum, I designed ten interactive worksheets for the 

research study: seven applets addressing graph-as-

picture errors, two including geometrical tasks about 

enlargement of a square, and two materials contain 

visualizations of motion problems.  

Those part of the research project dealing with graph-

as-picture errors proved to be the most varied. There-

fore, I present the following two interactive work-

sheets, which are based on tasks from Schlöglhofer 

(2000). They serve best for exemplifying the various 

design considerations of the applied materials. 

3.2.1  Billiard 

The interactive worksheet “Billiard” (see Figure 2) 

contains an iconic representation of the situation and 

a GeoGebra graphics window with the option to dis-

play the graphical representation in trace mode.  

  

Fig. 2:  Interactive worksheet “Billiard”, https://ggbm.at/z2avsGqt   

(Source: Adapted from “Investigating students’ use of dynamic materials addressing conceptions related to functional think-
ing”, by E. Lindenbauer, 2019, p. 2877). 

https://ggbm.at/EFVg7W8V
https://ggbm.at/ftqpETqJ
https://ggbm.at/z2avsGqt
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The applet simulates the following situation: From 

point P a red billiard ball is shot along the indicated 

dashed path. The distance d of the ball from the upper 

boundary of the billiard table is a function of time t. 

As the motion of the ball is animated with a constant 

speed neglecting friction for simplification reasons, 

distance d forms a piecewise linear function. 

When starting the animation, the ball rolls with con-

stant speed first to the upper boundary with decreas-

ing distance, then down to the lower boundary with 

increasing distance, and up again with decreasing dis-

tance. Students have the opportunity to watch ini-

tially only the movement of the ball in the left win-

dow and to make assumptions about how the distance 

d is changing qualitatively in the course of time. In 

this process, students have the option to pause and 

continue the animation or to use the slider represent-

ing time t to control the animation. Additionally, the 

situational representation provides a check box “dis-

tance d” for displaying corresponding numerical val-

ues of distance d(t), which aims at supporting stu-

dents to control their qualitative assumptions about 

the changing distance and to form conjectures about 

the shape of the graph.  

On the right side of the applet, distance d(t) can be 

displayed as trace in a Cartesian coordinate system 

after activating the check box “graphical representa-

tion”. Students are able to explore the relationship be-

tween the dynamically linked representations and to 

examine possible conjectures about the graph. The 

relational aspect of this functional dependency 

should be emphasized through pointwise appearance 

of the graphical representation in trace mode and the 

option to display the numerical values of time t and 

distance d. The dynamic feature of the animation and 

the linked representations should address the co-var-

iational aspect. 

3.2.2  Triangle dynagraph 

The GeoGebra worksheet displayed in Figure 3 is 

based on a task of Schlöglhofer (2000) mentioned in 

his paper about the graph-as-picture misconception. 

Hoffkamp (2011) examined the representational 

transfer to Cartesian coordinates in a similar learning 

environment in more detail with regard to (pre)con-

ceptions in calculus in upper secondary school level. 

The worksheet consists of a situational model as well 

as a dynagraph representation positioned underneath 

the situational model. During the research project, I 

applied a similar material displaying the same prob-

lem but utilizing Cartesian coordinates instead. 

In the situational model, a triangle is displayed. The 

area F of the shaded figure left of the dashed line in-

side the triangle is treated as a function of x, which is 

the horizontal distance between the vertex A and the 

dashed line. Students can move the line and change 

the area of the colored figure. The function F is a 

piecewise-defined, monotonically increasing func-

tion.  

Students have to interpret the dynagraph representa-

tion for determining approximately the numerical 

value of the area. After activating the check box 

“graphical representation”, on the lower axis the re-

spective value of distance x0 and on the upper axis the 

corresponding area F(x0) are displayed. This feature 

provides an “input-output” perspective, which 

stresses the relational aspect. Advantageously for 

avoiding a graph-as-picture error, students cannot 

perceive the dynagraph representation as static “im-

age”. The option to display the trace of the function 

value enables students to examine the image of the 

function, its minimum and maximum values, and 

possibly also emphasizes the monotonic properties of 

this function. 

 

Fig. 3:  Interactive worksheet “Triangle dynagraph”, 
https://ggbm.at/wrVPlwHE  

Students have the opportunity to manipulate the situ-

ation by dragging the yellow point either in the situ-

ational or dynagraph representation, thus changing 

the distance x and the corresponding function 

value F(x) accordingly. This dragging option pro-

vided in both representations and the possibility to 

actually vary the distance in the dynagraph empha-

sizes the co-variational aspect of the functional de-

pendency. Furthermore, this representation allows 

https://ggbm.at/wrVPlwHE
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students to examine the dependency of the area F(x) 

from the argument x because the point representing 

the function value on the upper axis cannot be 

dragged. 

In sum, I designed ten interactive worksheets assem-

bled within six topics for the research study, which 

will be described in the next section. 

4.  Research study 

4.1  Research methodology 

For addressing the research questions, I selected a 

qualitative, inductive approach. The methodological 

considerations led to a theory-building case study re-

search that integrates features of Grounded Theory in 

a case study design, in which the students represent 

different cases. 

4.1.1  Inductive approach 

In this research project, I wanted to examine what 

happens when students work with interactive work-

sheets in order to understand whether and in which 

ways these materials could support students and in-

fluence students’ conceptions. There already exists a 

variety of literature about functions, conceptions and 

problems in this field, and about the use of technol-

ogy. However, literature review reveals that we pres-

ently do not have sufficient knowledge about stu-

dents’ conceptions in an early phase of learning func-

tions (especially in the German-speaking literature) 

and about the basic conditions of any possible influ-

ence of these technology-based materials on the con-

ceptions of such students. In addition, I could not 

identify similar research about influence of interac-

tive representations on students’ conceptions in this 

particular field. As there does not already exist a the-

ory about these specific phenomena, this research 

project aims at inductively developing such a local 

theory that, for example, afterwards could guide the 

researcher through a follow-up design-based research 

project for improving the applied dynamic materials. 

For developing a local theory, an inductive research 

approach, in which a theory is built up from data, 

seems appropriate (Charmaz, 2014; Teppo, 2015). In 

particular, I followed Eisenhardt’s (1989) approach 

utilizing case study research for theory-building that 

integrates methods and features of Grounded Theory 

research. Instead of letting this research be guided by 

theory-driven conjectures, I wanted to keep an open 

mind about what might appear within the data in or-

der to first develop a basic understanding about stu-

dents who utilize interactive worksheets in this par-

ticular mathematical field. 

Concerning Grounded Theory, I tend to follow Char-

maz’ (2014) stance; she states that “literature review 

gives you an opportunity to set the stage for what you 

do in subsequent sections or chapters” (p. 308). Ac-

cording to her suggestions, the literature review 

serves to reveal gaps in existing knowledge, to posi-

tion the study, to argue the framing of this study, to 

clarify its contribution, and to be able to relate the re-

sults with literature. Literature review should lead to 

a critical stance towards already existing knowledge 

in Grounded Theory related research (Charmaz, 

2014). 

4.1.2  Theory building from cases 

Darke, Shanks, and Broadbent (1998) mention a 

number of difficulties in case study research, for ex-

ample, the analysis of a considerable amount of qual-

itative data with no standard analytical approach. One 

way to solve this problem is analyzing the data in a 

more rigorous and structured way by applying 

Grounded Theory analysis methods (Darke et al., 

1998; Halaweh, 2012). Different researchers have al-

ready combined Grounded Theory with case study 

research (Halaweh, 2012; Lawrence & Tar, 2013). 

Concerning building a theory from case study re-

search, I followed mainly the approach of Eisenhardt 

(1989), who describes the process of building a the-

ory from case study research integrating typical fea-

tures of Grounded Theory.  

Eisenhardt (1989, pp. 533–545) developed a roadmap 

including several steps for theory-building from case 

studies. First, the researcher has to clear the research 

focus and to define the research question(s). For 

choosing the participants, the researcher applies the-

oretical sampling, in which the sample should repre-

sent a broad range of the interesting population. Af-

terwards, usually different data collection methods 

are chosen and prepared. Next, the researcher enters 

the field; data collection and analysis are typically in-

tertwined and form a flexible design. Furthermore, 

field notes and memos are usually included in the 

data. For analyzing data, the author suggests first a 

within-case analysis to become familiar with each 

case and then to compare cases for searching cross-

case patterns. Another strategy may be analyzing data 

by data source. Ideas, relationships, and hypotheses 

emerge from data analysis. The emerging hypotheses 

are constantly compared with data (and also litera-

ture) until the researcher can build a theory fitting to 

the data. The central idea is Grounded Theory’s “con-

stant comparison”. Finally, the process stops until 

theoretical saturation. For pragmatic reasons (e.g., 

time), it is even possible to plan the number of cases 

in advance (Eisenhardt, 1989). 

Guided by this roadmap, I developed some specific 

alterations due to my research purpose concerning 

theoretical sampling and data collection in a flexible 

research design. First, the research questions are 
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strongly connected to each other and I had to examine 

students’ conceptions before and after the use of in-

teractive worksheets in class. Therefore, I was con-

sidering the influence of time on observational data; 

these considerations are related to the validity in 

qualitative design. According to Cohen, Manion, and 

Morrison (2011), “history” and “maturation” may be 

threats to the internal validity of this study that I had 

to consider. Both threats refer to an influence on the 

observational results beyond any intervention only 

because time passes during the research process (e.g., 

influence through regular teaching lessons during the 

research process, the change of students’ conceptions 

because they are getting older) (Creswell, 2014). Due 

to this time-based influence on the development of 

students’ conceptions, I had to guarantee that the 

whole data collection process did not last longer than 

two months. 

Second, I changed the daily routine in students’ 

school due to an intervention in school life when us-

ing the interactive worksheets, doing tests and con-

ducting interviews. For organizational and ethical 

considerations, it was sensible to include a whole 

class instead of single students from different 

schools. Therefore, I designed a fixed instead a flex-

ible research study. For ensuring theoretical sampling 

and theoretical saturation as important features of a 

theory-building approach, I selected two classes from 

a new secondary school usually attended by a wide 

range of low- and high-achieving students. Further-

more, I collected as much data as possible, which 

served as data pool for constant comparison during 

the data analysis. According to Vollstedt (2015), this 

is a reasonable way to guarantee theoretical satura-

tion if the data collection process does not include 

multiple cycles. 

4.2  Data collection methods 

Several types of data were collected in this study by 

diagnostic tests, diagnostic interviews, students’ 

worksheets on paper, and observations during the in-

tervention. 

The first research question enquires about students’ 

conceptions concerning functional thinking. For ob-

serving these conceptions, I utilized a diagnostic test 

to obtain an overview of all participants, and after-

wards I conducted several diagnostic interviews for 

an in-depth investigation. The second research ques-

tion seeks to examine the influence of interactive 

worksheets on students’ conceptions. I selected the 

following data sources to approach this question: (i) a 

recorded observation (audio, video, and screen re-

cordings) of students while they are working with the 

dynamic materials together with written comments 

and answers on paper worksheets attached to the in-

teractive worksheets, (ii) a diagnostic test after the 

observation, and (iii) diagnostic interviews with stu-

dents based on the observation and test results. 

4.2.1  Diagnostic tests 

According to Gurel et al. (2015), diagnostic tests are 

commonly used to diagnose students’ (mis-)concep-

tions. The paper-and-pencil diagnostic tests designed 

for this project are based on different tasks from lit-

erature concerning conceptions (De Bock, Van 

Dooren, Janssens, & Verschaffel, 2002; Schlöglho-

fer, 2000) as well as a test instrument called CODI 

(Nitsch, 2015). Furthermore, each task includes 

open-ended questions that aim at revealing students 

thinking processes, for example, students should ex-

plain their solutions or describe and reason their con-

siderations. 

Diagnostic test 1 approaches the first research ques-

tion about students’ conceptions concerning func-

tional thinking, and diagnostic test 2 addresses the 

second research question about a possible influence 

of the dynamic materials on students’ conceptions. It 

resembles the first diagnostic test using slightly mod-

ified tasks. Both tests aim at getting an overview of 

students’ erroneous and correct answers related to 

main problems in the area of functional thinking that 

may refer to their conceptions. 

The first diagnostic test contains 10 tasks combined 

within three topics: graph-as-picture error, distance-

time diagrams addressing the slope-height confusion, 

and illusion of linearity in tasks related to the enlarge-

ment of two-dimensional figures. During the research 

process, I decided to focus on the representational 

transfer between verbal description and/or iconic sit-

uational model and graphical representation. There-

fore, seven examples within the first two topics ad-

dress this kind of representational transfer. As partic-

ipants’ prior knowledge did not include linear func-

tions, I included three examples addressing illusion 

of linearity in tasks about enlargement of areas or 

two-dimensional figures.  

4.2.2  Diagnostic interviews 

As mentioned in the previous section, I decided to 

conduct diagnostic interviews to approach – together 

with diagnostic tests – the two research questions. 

Within the data collection process, diagnostic inter-

views were conducted twice after both diagnostic 

tests (see Figure 4). The first interviews were related 

to diagnostic test 1 and aimed at addressing the first 

research question about students’ conceptions; the in-

terviews after diagnostic test 2 should, together with 

students’ test results, support the examination of the 

second research question about any influence of 
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working with dynamic materials on students’ concep-

tions. While diagnostic tests should provide an over-

view of all participants’ conceptions regarding to the 

selected tasks, diagnostic interviews were held with 

students depending on their test responses to obtain 

an in-depth view of their individual conceptions. 

Diagnostic interviews were semi-structured. Based 

on the interviewee, each interview guide included 

fixed questions or tasks to be examined. The actual 

course of the interview, however, depended on par-

ticipants’ answers, allowing additional and clarifying 

questions as well as variations of already planned 

questions. This kind of interview aims at establishing 

a dialogue between the interviewer and the student to 

reveal students’ understanding of mathematical con-

cepts or ideas (Hunting, 1997). 

4.2.3  Observation 

The observation took place during a three-lesson-in-

tervention, when students worked in pairs with devel-

oped interactive worksheets (see section 3). While 

working, 10 students were audio- and videotaped and 

the screens of their laptops were recorded. In addi-

tion, students’ paper worksheets accompanying the 

dynamic materials were collected. As I wanted the 

recording procedure to be as unobtrusive as possible 

for the participants, I decided to utilize those laptops 

the students were already working with for recording. 

In this research project, I was mainly interested in the 

influence of these interactive worksheets on students’ 

conceptions. Although the teacher’s ability to inte-

grate such materials in mathematics education is an 

important factor for effective learning (Drijvers et al., 

2016), first we should understand what happens when 

students work with these worksheets without any 

teacher guidance. Therefore, my role as researcher 

was mainly as nonparticipant observer (Creswell, 

2014), except for the organization of the intervention, 

as supervisor of the participating students, and con-

tact in case of non-mathematical questions. Both 

mathematics teachers of the participating classes 

were not part of the observation process to ensure that 

they did not influence participants in their learning 

processes. 

4.3  Research design  

The research study consisted of different phases. Pi-

lot study A was the first phase of the study aimed to 

evaluate the technical details of the recording proce-

dures, to choose the tasks for the diagnostic tests and 

the interactive worksheets for intervention, and to pi-

lot the interview procedures. The second pilot study 

B consisted of one complete data collection process 

in an eighth grade of a new secondary school; the 

same process took place for the data collection in a 

seventh grade of a new secondary school. After the 

data collection, the data was transcribed and analyzed 

with qualitative methods described later (Linden-

bauer & Lavicza, 2017). 

The above described data collection methods were 

arranged to a research design including five data col-

lection stages: (1) diagnostic test 1, (2) diagnostic in-

terviews, (3) intervention, (4) diagnostic test 2, and 

(5) diagnostic interviews. Figure 4 presents an over-

view of the data collection process and the number of 

participants in each stage.  

First, all 28 selected students participated diagnostic 

test 1. Based on a follow-up analysis and students’ 

mathematics grades, I divided the students into two 

groups. For the first group, I selected ten students 

combined in five pairs for participating the observa-

tion process of the planned intervention. They were 

not selected as interviewees for the first diagnostic 

interviews before the intervention, because I did not 

want to influence their conceptions additionally by 

the interviewing process before they were working 

with interactive worksheets. Every pair was formed 

homogeneously with similar mathematics grades and 

comparable test responses. Homogeneous pairs 

should guarantee that most influences on students’ 

conceptions is due to working with interactive work-

sheets and not because of learning with a higher 

achieving colleague. Together, these students repre-

sented the range of achievement levels in mathemat-

ics from all participating students. 

 

Fig. 4:  Data collection process 

For diagnostic interviews, nine students of the second 

group were chosen depending on their test responses 
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so that their – incorrect – results represent a wide 

range of different conceptions related to the various 

tasks of the test. During the three-lesson-interven-

tion, students worked in pairs with interactive work-

sheets addressing different topics guided by accom-

panying tasks. While working, students of group 1 

were audio- and videotaped and the screens of their 

laptops were recorded. Also, students’ paper work-

sheets were collected. Group 2 students worked in 

another school’s computer lab supervised by their 

mathematics teachers. Both teachers were instructed 

before the intervention process in order to guarantee 

that the participants were not influenced in their 

learning processes by the teachers’ help. 

After completing the intervention, diagnostic test 2 

with slightly altered tasks was conducted. Based on 

the observational data and an analysis of the test re-

sults, I selected 11 students for diagnostic interviews 

to gather additional data for approaching the second 

research question about the influence of the dynamic 

materials on the students’ conceptions. After the data 

collection process, students’ names were changed to 

pseudonyms to preserve confidentiality and anonym-

ity. 

4.4  Participants 

The study was conducted with two seventh grade 

classes of a rural new secondary school consisting of 

28 students aged 12 or 13 within the second semester 

of the school year. Rural new secondary schools in 

Austria usually have the most diverse student popu-

lation concerning achievement levels. This is espe-

cially true for the selected school in this study; thus, 

this choice offers the possibility to examine as many 

different students and their conceptions as possible 

and to support internal validity of this research pro-

ject. 

As specified by the Austrian curriculum, students in 

seventh grade should be acquainted with the repre-

sentations of functional relationships as graph, for-

mula, and table as well as two types of functions (di-

rect and inversely proportional models). Therefore, 

they should be able to interpret Cartesian coordinates 

and to study graphical representations, but they are 

not accustomed to the concept of function. According 

to the mathematics teachers of the selected classes, at 

the time the study took place participants mainly had 

worked with direct and inverse proportionality focus-

ing on real-world applications and distance-time dia-

grams. Students had some experience in working 

with tables, reading function values from graphical 

representations, interpreting graphical representa-

tions, and creating graphs mainly using the software 

GeoGebra. 

4.5  Data analysis 

After the data collection, I divided data by source, 

transcribed and analyzed it by using the analysis soft-

ware MAXQDA. During data analysis, I followed 

coding procedures based on Grounded Theory in-

cluding initial, focused, and theoretical coding 

guided by the idea of constant comparison. Further-

more, I intertwined these coding procedures with Ei-

senhardt’s (1989) suggestions to analyze data within-

case and cross-case. 

For the first research question about students’ con-

ceptions, I started with a brief within-case analysis of 

the individual students’ test responses. Then, I con-

ducted initial coding of students’ test results and ex-

planations as well as transcribed interview data. As 

mentioned before, the tasks of the first diagnostic test 

can be grouped within the topics “graph-as-picture 

error”, “distance-time diagrams”, and “illusion of lin-

earity”. Due to differences between the tasks of each 

topic, which address separate students’ conceptions, 

I analyzed the data following this structure. 

During focused coding, I reorganized and structured 

the emerged codes, integrated codes from interview 

and test data, subsumed them within categories, and 

tried to find patterns and relationships between cate-

gories. Concerning the first topic (“graph-as-picture 

error”), after final theoretical coding, not core cate-

gories but diagrams representing the structure of the 

representational transfer emerged as condensed result 

of the data analysis for each task. Finally, the results 

concerning this topic were compared and synthe-

sized. 

Regarding the other two topics, related tasks were an-

alyzed together due to their respective similarities 

and connections. Similar to the first topic, I started 

with reanalyzing test data based on initial codes, fol-

lowed by developing categories, enriching and sup-

plementing them by interview data, and examining 

structures and relationships among the emerging 

themes. Again, I did not identify core categories, but 

major themes answering the first research question 

resulted from data analysis.  

When approaching the second research question, I di-

vided the data by source and started with initial cod-

ing, first of intervention data including paper work-

sheets, then diagnostic test responses, and finally in-

terview data (transcriptions as well as excerpts and 

memos). Due to the amount of data, I coded interven-

tion recordings for each topic of interactive work-

sheets that students utilized separately in MAXQDA. 

Moreover, I created brief within-case descriptions of 

the participants comparing their results from the first 
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to the second diagnostic test. If available, I addition-

ally included interview data within these descrip-

tions. 

Focused coding contained several cycles of compar-

ing and restructuring codes and data, developing cat-

egories, comparing categories with each other, with 

new emerging codes, and categories from, for exam-

ple, different data sources by constant comparison. 

Finally, I compared and integrated emerged catego-

ries from all data sources until first ideas, patterns, 

and hypotheses were revealed. In the final phase of 

theoretical coding, I integrated and synthesized cate-

gories from focused coding as well as patterns be-

tween them. I identified the core category around 

which other categories were related and analyzed 

these relations. Emerging hypotheses, conjectures, 

and ideas were examined until the results appeared to 

be well established. 

5.  Key results and discussion 

In this section, I highlight selected findings and pre-

sent summarized key results from the research pro-

ject regarding both research questions. 

5.1  Students’ conceptions 

As the tasks of the diagnostic test can be grouped into 

topics, I now present summarized results within the 

topics named as “graph-as-picture error” and “dis-

tance-time-diagrams”. 

5.1.1  Topic: Graph-as-picture error 

Figure 5 displays one task of the first diagnostic test 

based on a task from Schlöglhofer (2000). It ad-

dresses a graph-as-picture error and resembles the sit-

uation presented in the interactive worksheet “Trian-

gle dynagraph” (see Figure 3).   

 

Fig. 5:  Diagnostic test 1, task “Area” 

This task presents a trapezoid; students should imag-

ine drawing the dashed line from vertex A to the right 

by the distance x. In doing so, they should imagine 

how the area of the grey marked figure left of the 

dashed line changes. Afterwards, students had to 

choose one graph out of four representing the area of 

the grey marked figure as a function of distance x and 

to reason their solution. The third graph represents 

the correct solution, while the first presents a solution 

representing a graph-as-picture error. The second 

graph combines a correct graph with a graph-as-pic-

ture error, and the fourth solution visualizes a linear 

growth of area. 

This problem emphasizes the co-variational aspect as 

students have to examine the changing area of the 

grey shaded figure when the dashed line is moved the 

distance x to the right, and both quantities have to be 

considered mutually. The main focus lies on the qual-

itative change of the area. This representational trans-

fer was also examined in more detail by Hoffkamp 

(2011) with regard to (pre)conceptions in calculus, 

and it is considered particularly difficult. In contrast 

to other tasks of the diagnostic test, no real-world sit-

uation is presented but an abstract task, where stu-

dents have to mentally visualize the changing situa-

tion.  

Students’ responses revealed various levels of con-

ceptual understanding. Figure 6 visualizes a catego-

rization of students’ solutions and argumentations. 

The arrows represent the direction of the representa-

tional transfer from the situational model to the func-

tion graph, and the categories are arranged according 

to the correctness and elaborateness of students’ un-

derstanding. 

 

Fig. 6:  Solution categories task “Area” 

Six students were not able to solve this task, most of 

them because of a lack of comprehension. Due to this 

relative high number, I included a category “No com-

prehension”, which indicates the difficulty of this 

task.  

The next two categories 1B and 2 represent the choice 

of the first graph addressing a graph-as-picture error. 

Christoph (Category 1B) explained: “Because it has 
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to be so, the diagram must look the same way as the 

grey shaded area” 2. Either the students marked like 

Christoph the similarity between both representa-

tions, or they already recognized an increase of area 

but “remained” at the shape of a trapezoid. In the lat-

ter case, students proved able to mentally animate the 

situation. For example, Hannah explained as follows: 

“Because more and more is getting grey. However, 

the area/shape does not change. If we draw the line to 

B, everything will be grey, but it is still the same 

shape”. Similar to the other students on this level, 

Hannah was able to mentally animate the situation 

and to determine that the area of the grey shaded fig-

ure is increasing when moving the dotted line accord-

ingly. However, these students confused the area of 

the figure with the shape of the trapezoid and thus 

were not able to abstract the dependency of the area 

from the distance x, which led to a graph-as-picture 

error. Summarized, these answers revealed reasoning 

from a situational perspective of students, who did 

not manage to transfer the situational model into a 

function graph. Also answers assigned to “1A. Ad-

justment” were based on a situational perspective, 

where students tried to find similarities between both 

iconic representations or tried to adjust (parts of) the 

iconic situational model to the chosen graph. One 

characteristic student answer was given by Amelie: 

“If you draw the dashed line from vertex A to x, it is 

a straight line.” Interview data further revealed her 

focus on the arrow labeled x (see Figure 5). As this is 

a straight line, she chose the linear function out of the 

four possible solution choices due to its visual simi-

larity to this arrow. It could be discussed if her answer 

represents a kind of graph-as-picture error. 

The third category includes answers of students who 

selected the linear function and described qualita-

tively correct that the area increases when you draw 

the dashed line to the right but did not recognize the 

irregular change of the function value. For example, 

Barbara explained: “Because when you continue to 

draw this line, the side x and the area gets bigger and 

bigger”. Categories 4 and 5 consist of solutions of 

students who correctly chose the third graph with dif-

ferently elaborate descriptions of the increasing area 

when mentally animating the situation. For instance, 

Harald described the irregular changing area: “First, 

it [the area] gets slightly larger, then stronger, and fi-

nally the increase remains constant.”  

Data analysis revealed that students with solutions of 

categories three to five achieved transfer to a graph-

ical representation by recognizing an increasing func-

tion value, and these solutions were essentially cor-

rect, whereas the other students reasoned from a situ-

ational perspective. This gap visualized in Figure 6 

before the last three categories indicates a “compre-

hension gap” that we can assume between students 

who either achieved to translate the functional de-

pendency to a graphical representation and students 

who did not. As similarly outlined by Nitsch (2015, 

pp. 282–291), this comprehension gap appears to be 

an obstacle that students have to overcome to be able 

to reason from a graphical perspective. 

In addition to the task “Area”, the topic “graph-as-

picture error” of the research project included two 

further tasks (“Skier”, “Billiard”) also based on ex-

amples from Schlöglhofer (2000). For each of these 

tasks, several levels of conceptual understanding 

emerged during data analysis that represent the trans-

lation process from situational to graphical represen-

tations. Furthermore, these levels indicate that stu-

dents reasoned from different perspectives (situa-

tional, graphical). There appears to be a relation be-

tween students with incorrect solutions and their ten-

dency to explain from a situational perspective and to 

prefer a pointwise, static view on functional depend-

encies. Furthermore, also results from the other tasks 

“Skier” and “Billiard” indicate a comprehension gap 

between situational and graphical representations and 

not a continuous transfer. Possible reasons for this 

gap could be students’ difficulties in understanding 

and interpreting Cartesian coordinates or students’ 

inability to focus on more than one feature or varia-

ble. The latter can be examined under the more gen-

eral term of covariational reasoning as described by 

Johnson, McClintock, and Hornbein (2017). 

The joint analysis of the above-mentioned three tasks 

regarding the graph-as-picture error in the research 

project led to following conclusions: For being able 

to successfully translate from verbal and/or iconic sit-

uational to graphical representations, it appears that 

students should manage the following steps: (i) to un-

derstand the presented situation, (ii) to visualize the 

presented situation, (iii) to identify the dependent 

variable, (iv) to describe (verbally) the behavior of 

the dependent variable as a function from the inde-

pendent variable in a qualitative way, (v) to translate 

the basic course of the functional dependency to a 

graphical representation (e.g., qualitative correct 

change of the function value), and (vi) to represent 

changes of the dependent variable in a correct way 

(e.g., qualitative correct change of slope). The above-

mentioned comprehension gap would thus occur be-

tween steps (iv) and (v) (Lindenbauer, 2018). 

In essence, several students’ problems, conceptions, 

and solution strategies appeared during data analysis, 

for example: problems in understanding the pre-

sented situation, especially when students were not 

able to rely on everyday experiences; misinterpreta-

tions of the presented situation or the dependent var-

iable; various forms of graph-as-picture errors prob-

ably caused by a confounding influence of the iconic 
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situational model; illusion of linearity; and influences 

of prior knowledge. Moreover, students’ tendency to 

search for visual or structural similarities between 

both representations was frequently observed, in par-

ticular when students struggled with problem-solv-

ing. 

5.1.2  Topic: Distance-time diagrams 

Regarding the topic “distance-time diagrams”, the 

majority of students was able to solve these problems 

correctly, possibly due to their prior teaching experi-

ences in this field. However, several student errors, 

problems, solving strategies, and influencing factors 

on their learning processes emerged from data analy-

sis. These themes contain (i) various forms of slope-

height confusions, (ii) language-based misinterpreta-

tions, (iii) graph-as-picture errors, (iv) errors due to 

inaccurateness when determining function values 

from graphs, (v) problems of missing scaling, 

(vi) misinterpretations of axes, (vii) tendency to ig-

nore information, again (viii) search for visual and/or 

structural similarities, and (ix) an influence of real-

world experiences. Various reasons could cause these 

student problems and errors; for example, an influ-

ence of informal language (e.g., when students inter-

pret “highest speed” as “leading” or “winning”) may 

lead to a slope-height confusion.  

The confusion of slope and height indicates that stu-

dents focus on the position of the function graph in-

stead of the slope at the respective point of time or 

during a period of time. For example, Jasmin ap-

peared to underlie a specific kind of slope-height mis-

conception. Figure 7 presents task “Runner” of the 

first diagnostic test, in which students had to identify 

which runner is the fastest in the period from 4 to 5 

seconds. By choosing solution 1, Jasmin made a 

slope-height error but only in this example. She 

solved correctly two further corresponding single-

choice tasks providing, among others, the following 

explanation: “Because at 5 [seconds] … the graph is 

highest”.  

 

Fig. 7:  Diagnostic test 1, Task “Runner”   

(Source: Adapted from “Diagnose von Lernschwierigkeiten 
im Bereich funktionaler Zusammenhänge”, by R. 
Nitsch, 2015, Wiesbaden: Springer Spektrum.) 

At first, I thought it to be a correct perception of the 

highest slope. However, her solutions did not reveal 

a pattern described, for example, by Nitsch (2015) 

with respect to slope-height confusions, but they had 

one feature in common: In all three tasks, Jasmin 

chose the graph with the highest function value at the 

end of the observation period. A subsequent inter-

view revealed, that she actually concentrated on the 

function value at the end of the observation period, as 

it were, on the winner of a race. In effect, Jasmin was 

able to solve tasks correctly based on an incorrect 

conception because in two of the three utilized tasks, 

the fastest object had also the highest function value 

at the end of the observation period 

This example together with further student explana-

tions in the first diagnostic test showed that faulty ac-

tivated conceptions led to correct answers in single 

choice items; only student explanations revealed in-

correct thinking processes. Results thus made visible 

that standardized single-choice test items were not al-

ways able to detect a corresponding incorrect concep-

tion.  

5.2  Influences of dynamic materials 

Various categories emerged from the common anal-

ysis of observation data from intervention as well as 

data from the second diagnostic tests and interviews 

that can be subsumed under several topics, for exam-

ple, influencing learning process, misinterpretations 

and sources of difficulties, dynamic materials and 

representations, and potentials and problems of uti-

lizing dynamic materials. In brief, there appears to 

exist a supporting influence of working with interac-

tive worksheets on students’ conceptions; however, 

the extent of this influence seems to depend on stu-

dents’ intuitive conceptions and achievement levels. 

Following, I highlight some summarized main results 

from the project. 

5.2.1  Influencing learning process 

As can be seen in Figure 8, when students utilized dy-

namic materials for solving tasks, they observed what 

happened within the dynamically linked representa-

tions either more actively by manipulating dynamic 

representations (e.g., experimenting by moving slid-

ers) or more passively when observing an animated 

movement. The number and variety of codes as-

signed to recorded data suggest an influence of 

achievement level on how diversely students worked 

with these dynamic materials; in particular, higher 

achieving students seemed to utilize these materials 

in more varied ways. For instance, Wolfgang and 

Harald, the highest achieving students who worked 

together during the intervention, used the trace mode 

to mark extrema of the function within a dynagraph 
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representation (Interactive worksheet “Billiard dyna-

graph”, https://ggbm.at/hSP3H9wv), something that 

no other student did. In contrast, lower achieving stu-

dents mainly utilized this material passively (e.g., by 

watching animations). Possibly, this student behavior 

could be connected to students’ use of visual repre-

sentations in problem-solving processes as described 

by Stylianou and Silver (2004). These researchers 

compared novice and expert students’ behavior and 

realized that the latter utilize visual representations in 

a wider variety of problems and in more varied ways 

(Lindenbauer, 2019).  

 

Fig. 8:  Influencing factors of learning process with dy-
namic materials 

The way the students utilized the dynamic materials 

influenced what they observed and consequently 

what they perceived. As visualized in Figure 8, stu-

dents’ learning processes include several factors. The 

data analyses reveal perception as a main category of 

working with interactive worksheets. In this context, 

perception means that students consciously observe 

something and take it further into account for consid-

erations or interpretations. In particular, students ap-

pear to focus on visual or structural features of iconic 

situational and graphical representations. This stu-

dent behavior becomes especially apparent when stu-

dents have difficulties in solving tasks. Therefore, 

such features (e.g., shape of graph, trace) seem to in-

fluence considerably students’ perception and thus 

their learning processes.  

Repeatedly, there was a difference between what stu-

dents were supposed to observe and what they really 

perceived, especially average and low achieving stu-

dents. The dashed arrow in Figure 8 visualizes a pos-

sible existing influence of students’ achievement lev-

els on their perceptions. For example, Konstantin and 

Mario worked with the worksheet “Triangle”, pre-

senting the same situational model as in Figure 8, for 

examining the question how the area of the shaded 

figure changes when moving the yellow point from 

right to left.2 

Konstantin: (While moving the dashed line from left to 

right and watching the increasing area): So, it [the area] 

is small. Then it gets big, big, big, and then we have the 

entire big one. 

Mario: So, it is dragged into the length.  

Konstantin immediately focused on the area of the 

shaded figure, while Mario’s remark could be inter-

preted that he perceived a change of form and thus 

focused on the visual feature “shape” and not the in-

tended variable. 

In essence, combined data analysis regarding the sec-

ond research question of the overall project indicates 

an intention-reality discrepancy between the mathe-

matical content the dynamic materials are intended to 

visualize and what students really perceive, espe-

cially when students focus on visual features of inter-

active worksheets. One reason for this discrepancy 

could be that students would need more profound 

knowledge and stable conceptions about Cartesian 

coordinates and their interpretation as well as about 

representational transfers.  

The interpretations as well as perceptions of the dy-

namic materials are affected by students’ prior 

knowledge and experiences. Observational data re-

peatedly demonstrated that students tried to link per-

ceived features to their existing knowledge (e.g., ge-

ometric figures, distance-time graphs, proportional-

ity) or everyday experience. For instance, the follow-

ing conversation took place when Carina and Sarah 

first encountered the graphical representation in dy-

namic worksheet “Triangle” (see upper graphics win-

dow in Figure 3). They should examine the question 

of how the shaded area changes when moving the 

dashed line from left to right.   

Carina: (moves the dashed line from vertex A to vertex 

C); a triangle. So, if it [dashed line] is at vertex C, if it 

is like that …, then it is a triangle. If you make it so 

(moves the dashed line to vertex B), then it is also a 

triangle. And so (moves the line backwards in between 

B and C) it is, um … 

Sarah: Here, it is a polygon. 

Carina: A quadrilateral. 

Especially Carina first focused on the form of the 

shaded figure instead of its area, and she compared 

the perceived forms with already known geometric 

figures. Further data also analysis indicated, that es-

pecially when students had problems in understand-

ing and solving the presented tasks, they tended to 

rely on their prior knowledge for problem-solving. 

Literature also discusses this relation of prior 

knowledge with students’ perceptions and concep-

tions. According to Roschelle (1995), who examined 

learning in interactive environments, prior 

knowledge actually influences students’ perceptions 

https://ggbm.at/hSP3H9wv
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and conceptions such as Carina’s focus on the form 

of the figure instead of its area in the above-men-

tioned example. Their individual prior knowledge 

and experiences affect how students perceive visual 

representations and thus how they interpret them 

(e.g., Cook, 2006; Roschelle, 1995). Especially per-

ceptual set theory of cognitive psychology discusses 

such individual influence on students’ perception 

when selecting and interpreting information 

(McLeod, 2010).  

5.2.2  Misinterpretations and sources of diffi-
culties 

Several sources of difficulties and misinterpretations 

of students when working with dynamic materials 

and related tasks could be identified in this project. 

The outlined difficulties include language-related 

problems, difficulties during various steps of the rep-

resentational transfer, incorrect observations, misin-

terpretations of perceived features, and confusions of, 

for example, variables or axes. Further misinterpreta-

tions can be connected to misconceptions of students, 

such as graph-as-picture errors, illusion of linearity, 

and slope-height confusions. Moreover, results indi-

cate an influence of students’ individual prototype of 

a function as well as incorrect physical conceptions. 

Two further misinterpretations, which I call “adjust-

ment” and “reflection”, are strongly related to stu-

dents’ tendency to look for visual or structural simi-

larities. Adjustment refers to students’ behavior of 

trying to adjust two representations of a functional 

dependency (e.g., verbal description and graph) in-

correctly by making them fit in some way. It is espe-

cially apparent in single-choice item tasks and could 

be based on a distracting influence of incorrect solu-

tions or a lacking conceptualization of Cartesian co-

ordinates.  

Reflection as misinterpretation evolved during this 

research project and is probably related to a graph-as-

picture misconception. Figure 9 depicts the task “Bil-

liard” from the second diagnostic test. In this task, a 

billiard ball moves along the indicated path, and stu-

dents should consider the distance of the ball from the 

upper boundary of the table as a function of time. 

 

Fig. 9:  Diagnostic test 2, Task Billiard 

Pia chose the correct third solution and reasoned: “I 

have thought it has to be reversed”. Although she 

chose the correct solution, her test response was not 

meaningful enough to determine her conceptions, 

and I started an interview by referring to it. 

Interviewer: Why reversed? 

Pia: Because the other solution is not there, the right 

one. 

Interviewer: Which right one? 

Pia: The upper one (moves along the path of the billiard 

ball in the situational model). And then I thought it has 

to be reversed, mirrored.  

The ensuing dialogue revealed that by “the right 

one”, Pia meant a graph resembling the iconic model 

of the billiard table. She was looking for the graph 

representing a graph-as-picture error and overlooked 

this particular solution in Figure 9. Her explanations 

imply a graph-as-picture misconception and also re-

veal a specific solution strategy. Pia did not consider 

the change of the dependent variable in course of time 

but perceived a specific visual feature – the form of 

the path in the iconic situation model. Afterwards she 

looked for a solution globally corresponding to the 

situation. As she overlooked that particular solution, 

she tried a further idea and chose the graph reflecting 

the iconic situational model, something she experi-

enced when working with the interactive worksheets. 

In fact, both ideas resemble each other as one global 

feature of the iconic model – its form – is interpreted 

as potential graphical representation. In sum, data in-

dicate that Pia interpreted a specific perceived feature 

influenced by a “graph-resembles-picture” concep-

tion.  

This kind of misinterpretation is most likely induced 

by the specific design of interactive worksheets the 

students worked with in which the iconic situational 

models and function graphs appear to mirror each 

other (e.g., interactive worksheet “Billiard” presented 

in Figure 2). As a result, incorrect interpreted visual 

or structural features could induce new misconcep-

tions. 

5.2.3  Potential and problems of dynamic 
materials 

Dynagraph representations emphasized certain char-

acteristic properties of functions such as fixed or in-

flection points, which several students observed 

without being explicitly questioned about. For exam-

ple, Franziska implicitly recognized the inflection 

point of the functional dependency presented in inter-

active worksheet “Triangle dynagraph” (see Fig-

ure 3) when asked to describe how the function value 

changes when x increases. She answered: 
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Franziska: Here it [area] is increasing faster (moves the 

x value from x = 0 to x = 1) . . . and then slower again. 

Interviewer: Do you have any idea from where it slows 

down? 

Franziska: So, from here on (moves dashed line to ver-

tex C).  

As the dialogue reveals, Franziska identified the in-

flection point from which on the change of rate de-

creases. The “speed” of the point representing the 

function value compared with those of the point rep-

resenting the argument x seemed to be a feature easily 

perceived. Therefore, this dynamic characteristic of 

dynagraphs could be utilized in mathematics teaching 

to assist students in accessing graphical representa-

tions. Possibly, dynagraphs could support students as 

step between translating directly from situational 

model to representations applying Cartesian coordi-

nates (Lindenbauer, 2019). 

Results concerning the use of dynagraph representa-

tions reveal that they appear to be intuitive for stu-

dents to interpret and thus provide an easy access to 

graphical representations. As outlined in literature, 

they actually seem to emphasize the co-variational 

aspect of functional dependencies. During the re-

search study, a small number of minor problems re-

garding how to read function values appeared and 

thus should be considered when applying dynagraph 

representations in school. For these reasons, charac-

teristic features of dynagraphs could be utilized in 

mathematics teaching to support students in access-

ing graphical representations, possibly in scaffolding 

the representational transfer to Cartesian coordinates. 

Several potentials and problems of working with dy-

namic materials emerged from data analysis. The vis-

ualizing function of these materials can support stu-

dents in understanding and visualizing a situation as 

well as for identifying and describing the dependent 

variable. Depending on students’ prior conceptions 

and their understanding of Cartesian coordinates, the 

dynamic materials utilized in this project seem to 

have an adaptational influence on students’ concep-

tions. In other words, they appear to support students 

in improving descriptions of functional dependencies 

(e.g., leading to qualitative correct ideas about chang-

ing slopes of function graphs). Results related to the 

first research question revealed a comprehension gap 

as obstacle for students to overcome during the rep-

resentational transfer (see section 5.1). Data analyses 

indicate that if students are basically not able to un-

derstand and interpret graphical representations in 

Cartesian coordinates, they could rather not over-

come this comprehension gap by working with inter-

active worksheets without teacher guidance. Appar-

ently, they would profit from teachers’ assistance to 

help them reflect and reconsider their perceptions and 

interpretations. For students who are basically able to 

make representational transfers, dynamic materials 

seem to be helpful because they appear to induce ad-

aptations of students’ conceptions.  

However, these materials could also induce new mis-

conceptions especially when only superficially per-

ceived and incorrectly interpreted. Incorrect inter-

preted visual or structural features could influence 

students’ conceptions in a negative way and lead to 

such new erroneous conceptions. Therefore, data 

analysis results reveal a potential danger of working 

with interactive worksheets without teacher guid-

ance, especially for lower achieving students who are 

not able to perceive mathematically relevant features 

and to interpret them basically in a correct way. 

6.  Conclusion 

Different levels of students’ conceptual understand-

ing emerged during analysis of the first diagnostic 

test and interview data. These levels represent the 

translation process from situational model to function 

graph and include a comprehension gap for students 

between both representations. In school, teachers 

should be aware of this gap as an obstacle that stu-

dents have to overcome. For successfully performing 

such translation processes, students should be able to 

understand Cartesian coordinates and interpret such 

abstract representations of a functional dependency. 

Furthermore, student explanations made visible, that 

standardized single-choice item tasks were not al-

ways suitable for detecting a corresponding incorrect 

conception, especially for students with little experi-

ence concerning functions. 

Results seem to reveal that the extent of influence of 

these materials on students’ conceptions depends on 

the intuitive conceptions of students and their 

achievement level. When utilizing dynamic materi-

als, teachers should be conscious of students’ ten-

dency to perceive and interpret visual or structural 

features of both discussed representations even when 

they are not relevant and not always in a correct way. 

As stated in Lindenbauer and Lavicza (2017), the dy-

namic materials seem to be more appropriate for 

higher achieving students when working without 

teacher guidance, whereas lower achieving students 

might profit of teachers’ assistance to reflect their 

perceptions and interpretations. A further question to 

consider when teaching with interactive materials is 

how to draw students’ attention to relevant features 

for mathematical learning and to support them in re-

flecting their ideas. In addition, I would advise utiliz-

ing dynagraphs in mathematics teaching because they 

seem to provide an easy and intuitive access to repre-
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sentations. Possibly, they could also be used to scaf-

fold the interpretation of graphs in Cartesian coordi-

nates. 

How to improve the interactive materials and espe-

cially how to implement them in regular teaching are 

additional questions that emerged during this re-

search project. Design experiments and instrumental 

approach respectively could be suitable frameworks 

to investigate these questions further in other studies. 

Remarks 
1 Translation of the author 
2 All students’ written and spoken comments are originally 

in German and translated by the author. 

Thanks 

I would like to thank the reviewers for their valuable 

and constructive remarks and comments. 
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