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 Abstract 

The seasonally-dry tropics of northern Costa Rica are characterized by recurrent drought events 
with negative socio-economic impacts on a vulnerable population. Scarce hydroclimatic obser-
vational data constraints reasonable water management and often results in water scarcity issues. 
This study analyses hydrological drought situations using freely available Global Precipitation 
Products (GPP) and a Regional Climate Model (RCM) that drive a relatively simple, semi-distributed 
rainfall-runoff model (HBV-Light). Firstly, the GPP and observed rainfall were used to calibrate the 
model simulating streamflow dynamics. Secondly, drought detection and estimates of drought du-
ration, intensity and severity were determined with a daily variable threshold approach. Thirdly, we 
developed future hydrological drought scenarios based on a RCM. Generally, the GPP CHIRPS (Cli-
mate Hazards Group InfraRed Precipitation with Station Data) resulted in the best streamflow sim-
ulations (KGE > 0.6) compared with the model driven by observed rainfall (KGE > 0.7). CHIRPS also 
correctly identified the observed streamflow drought periods of 1994, 1997-1998 and 2001-2002. 
Average observed streamflow drought severity was 27.9 mm compared to the CHIRPS-derived se-
verity of 20.6 mm (error estimate of ±7.3 mm). The model in combination with global data can be 
successfully used to identify drought periods and their duration, but model uncertainty currently 
prevents from forecasting streamflow deficit with volume errors below 50%. The future hydrolog-
ical drought scenario showed more severe drought periods between 2039-2041 and 2042-2043. 
This study responds to the need for drought assessments in the seasonally-dry tropics with scarce 
observations as a tool for adaptation to climate change and water resource management.

Research article
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 1 Introduction 

Drought is a recurrent extreme climate event characterized by be-
low-normal precipitation (van Loon, 2015), that can occur global-
ly, in contrast to the permanent aridity that prevails in arid zones 
(Dai, 2011). Droughts are mainly classified into meteorological, 
agricultural, hydrological, and socio-economic events (Van Loon, 
2015). Meteorological drought is related to precipitation deficit 
during a prolonged period, while the agricultural drought is the 
reduction of water availability in the soil for vegetation use, re-
sulting in crop losses (Van Loon, 2015). Hydrological drought is 
defined as the deficit of streamflow and/or volume of surface-or 
groundwater levels (Marcos, 2001). Finally, the socio-econom-
ic drought characterizes the impacts by each previous types of 
drought (Van Loon, 2015).  

Drought analysis suffers from inaccessible and unreliable hydro-
meteorological in-situ observations particularly in tropical regions 
where hydrological droughts are recurrent events and are expect-
ed to become more frequent in the future (Nauditt et al., 2017). 
Drought research has so far been less focused in tropical regions 
than in other geographical areas (Nauditt & Ribbe, 2017), limiting 
the prospects of a robust monitoring (Ndehedehe et al., 2016), 
and constraining the understanding of spatio-temporal dynamics 
of drought occurrence at different spatial and temporal scales. To 
partly overcome this data scarcity, freely available Global Precip-
itation Products (GPP) provide spatially and temporally precipi-
tation estimates in relation to the sparse in situ measurements. 
GPP together with Regional Climate Models (RCM) that forecast 
weather conditions are useful input information for rainfall-run-
off models. This assembly can help to characterize and forecast 
drought events (Van Loon, 2015), with the aim to improve water 
resources management and to reduce their related socio-eco-
nomic impacts. Many studies have evaluated the performance of 
GPP (Behrangi et al., 2011; Thiemig et al., 2012; Adler et al., 2001; 
Shen et al., 2010) and their ability to generate accurate precipi-
tation estimates for hydrological modelling (Artan et al., 2007; 
Liechti et al., 2012; Maggioni & Massari, 2018). Zambrano-Bigiarini 
et al., (2017) highlighted the opportunities of using GPP for hydro-
logical applications such as modelling and evaluation of droughts 
and floods. Moreover, conceptual hydrological models are consid-
ered the main tools for drought assessment (Van Loon, 2015). In 
a context of data scarcity, such as in Central America, the use of 
such technologies to monitor drought‐related variables, forecast 
and quantify drought impacts (AghaKouchak et al., 2015) should 
be perceived as an opportunity to improve the understanding of 
droughts at different spatial and temporal scales.

Central America is climatologically influenced by the Caribbean 
Sea and the Eastern tropical Pacific Ocean weather patterns re-
sulting in a pronounced seasonality of precipitation and flow re-
gimes. This seasonality presents periods of water deficit during 
the dry season, that in a context of climatic variability is often con-
sidered as drought. The region has historically been affected by 

droughts with negative consequences for the agricultural sector, 
impacting the food security of the population (Calvo-Solano et al., 
2018; Quesada-Montano et al., 2018). One of the most affected 
locations is found across the Central American Dry Corridor (CADC), 
where the dry season lasts on average 5 months. This area is inhab-
ited by 50% of the total population and 67% of the rural population 
living in poverty (Gotlieb et al., 2019) and socio-economic vulner-
ability (Calvo-Solano et al., 2018). One of the main concerns is that 
the unregulated water use for industry and irrigation, affects this 
population particularly during the dry season (Guzmán, 2013). In 
northern Costa Rica – a part of the CADC - recent droughts resulted 
in drinking water supply issues and economic losses (Birkel, 2006). 
Our study site, the Tempisque catchment located in the CADC is one 
of the most vulnerable regions to climate change in the country (Hi-
dalgo & Alfaro, 2012) and often affected by hydrological droughts. 
However, the aim of this research is to evaluate past and near-future 
hydrological drought in this catchment, using GPP, RCM and the rel-
atively parsimonious hydrological model HBV-Light.

The specific objectives are to: 
I Analyze the performance of GPP used as input to the HBV-

Light model in a gauged Tempisque River sub-catchment.
II Perform a hydrological drought analysis calculating severity, 

duration, and intensity for a historic period that covered ob-
served and documented extreme droughts.

III Analyze the predictive capability of the calibrated model to 
estimate future hydrological drought scenarios using climate 
projections of precipitation from a Regional Climate Model 
for the Central American and Caribbean domain.                                                                                          

 2 Methods 

2.1 Study site: The Tempisque catchment
The Tempisque-Bebedero catchment (5 400 km2) is located in the 
Guanacaste province, north-west Costa Rica (Figure 1), extending 
from the Central Volcanic cordillera to the Gulf of Nicoya (Pacific 
Ocean) (Monge & Gómez, 2007). This catchment with mean ele-
vation of 260 m.a.s.l. and a mean slope of 6° exhibits rivers with 
a low transport capacity particularly in the lowlands and flood-
plains. Their tributaries originate in the foothills of the Guanacaste 
Volcanic Range, which has maximum altitudes of around 1900 
m.a.s.l. (Barrantes, 2010). Although forests and wetlands were the 
original land cover of the catchment, forests have been partly re-
placed by crops, pastures and urban areas. The extension of pro-
tected areas has increased over the past twenty years and today, 
the only intensification of agricultural activities is related to cash 
crops such as sugar cane, rice and melon (Mateo-Vega, 2001). The 
study catchment is geologically composed of Tertiary and Quater-
nary materials, with a predominance of young Quaternary volcan-
ic rocks (Guzmán, 2013). 

The Tempisque sub-catchment used for modelling purposes is de-
fined by the discharge gauging station La Guardia (Figure 1, right 
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Figure 1: The right panel shows the topographic representation and drainage network of the gauged Tempisque subcatchment, Guanacaste, Costa 
Rica. The left panel shows a CHIRPS V2.0 interpolated mean annual precipitation (1981-2017) map for the Tempisque-Bebedero catchment. The 
green points indicate meteorological stations and black point shows the streamflow gauging station La Guardia. The bottom panel represents the 
monthly precipitation (blue bars) and streamflow (dotted red line) regime of the Tempisque sub-catchment for 1993 to 2003.

panel) and drains an area of 990 km2 (Table 1) (Guzmán, 2013). 
Here, twelve soil subgroups have been identified, most of them part 
of two taxonomic orders: entisols and inceptisols (56% and 34% of 
the catchment area, respectively) (Guzmán, 2013; ITCR, 2004). 

A seasonal tropical climate with a clear cycle of dry and wet peri-
ods dominates the Tempisque catchment (Birkel et al., 2017). The 
Caribbean climate influences the upper part of the catchment 
close to the continental divide with consistent rain and high rel-

ative humidity throughout the year (Figure 1). The Pacific Ocean 
influence is associated with rainfall events mainly between May 
and November and a marked dry season from December to April 
(Duran-Quesada et al., 2010). The dry season presents low to zero 
precipitation (Figure 1, bottom panel) with maximum values in 
September and October. The monthly temperature varies be-
tween 30.2°C and 24.6°C throughout the year (Mateo-Vega, 2001). 
The streamflow regime closely follows the climatic variability as 
shown in Figure 1, bottom panel. 
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2.2 Data

2.2.1 Ground-based and Global Precipitation data sources
The Center for Geophysical Research (CIGEFI) of the University of 
Costa Rica provided daily in situ precipitation data from 14 meteor-
ological stations. Daily streamflow time series (1993-2003) from the 
La Guardia station were provided by the National Electricity Insti-
tute (ICE). The potential evapotranspiration (PET) was derived from 
the Moderate Resolution Imaging Spectroradiometer (MODIS;Kan-
niah et al., 2009), and spatially averaged to represent the mean 
catchment PET. The spatio-temporal resolution and available data 
of the GPP products CHIRPS v2.0, MSWEPv2.1, PGFv3 and TRMM-
3B42v7 are summarized in Table 2 and are briefly described below. 
All data sets were spatially averaged for the Tempisque catchment 
and for the period from 1993 to 2003 for model analysis. The study 
period was selected according to the most reliable streamflow 
data record. The benchmark model used a single best precipita-
tion station close to the streamflow gauging station (Figure 1) after 
initial tests with different spatial interpolations of all available 14 
stations that performed worse in hydrological modelling.

CHIRPS v2.0 
The Climate Hazards Group InfraRed Precipitation with Station 
Data (https://data.chc.ucsb.edu/products/CHIRPS-2.0/) version 2.0 

has a relatively high spatial resolution of 0.05° and covers from 50°S 
to 50°N. The product uses an “intelligent interpolation” approach, 
which works with anomalies in high-resolution climatology. It also 
contains a daily, pentadal and monthly precipitation estimate from 
1981 to present and was designed primarily for monitoring agri-
cultural drought and global change (Funk et al., 2015).

MSWEPv2.1 
The Multi-Source Weighted-Ensemble Precipitation (http://www.
gloh2o.org) version 2.1 provides daily precipitation data from 
1979 to 2018, with a spatial resolution of 0.10°. It was designed 
to analyze and understand differences in precipitation, as well as 
hydroclimatic processes to improve the performance of hydrolog-
ical models (Beck et al., 2019). 

PGFv3 
The PGFv3 (http://hydrology.princeton.edu/data/pgf/v3/0.25deg/
daily/) as an improved global precipitation product from Prince-
ton University, that presents information combined through a 
re-analysis of data from various products, such as from the Nation-
al Center for Environmental Prediction for Atmospheric Research 
(NCEP-NCAR) and the TRMM mission. The spatial resolution is 
0.25° within a time window from 1979 to 2010 (Zambrano- Bigia-
rini et al., 2017). 

Descriptor Units Tempisque

Precipitation Min mm/ year 1517

Max mm/ year 3881

Mean mm/ year 1930

Area Total km2 990

Geology - - Tertiary and Quaternary materials (Quaternary volcanic rocks)

Land cover - - Forest, wetland, crops, pastures and urban areas

Soils - - Taxonomic orders: Entisols and inceptisols

Elevation Min m.a.s.l. 18

Max m.a.s.l. 1916

Mean m.a.s.l 332

Product Spatial Resolution Temporal Resolution Time period

CHIRPS v2.0 0.05° Daily 1981- Current

MSWEPv2.1 0.10° Daily 1979-2018

PGFv3 0.25° Daily 1979-2010

TRMM-3B42v7 0.25° Daily 1998-2019

Table 1: Precipitation and physical characteristics of the Tempisque subcatchment. 

Table 2: Summary of the tested daily Global Precipitation Products.
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TRMM-3B42v7
The Tropical Rainfall Measuring Mission (TRMM) global precip-
itation product (https://giovanni.gsfc.nasa.gov/giovanni/#ser-
vice=MpAn&starttime=&endtime=&data=TRMM_3B42_Dai-
ly_7_precipitation) provides an estimate of the quasi-global 
precipitation of a wide variety of modern global products that 
relate to satellite-borne rainfall. It presents a spatial resolution of 
0.25° with an extension of 50°N-S from 1998 to present (Huffman 
et al., 2010). 

The Regional Climate Model (RCM) projections
The Regional Climate Model (RCM) has a spatial domain covering 
northern Central America and the Caribbean, and uses the coupled 
system ROM, which consists of a regional atmosphere model cou-
pled to a global ocean and is based on the CORDEX (Coordinate 
Regional Downscaling Experiment) spatial domain (Cabos et al., 
2018). REMO, is the Regional atmosphere Model with prognosis of 
the surface pressure, horizontal wind components, rainfall, temper-
ature, water vapor, and cloud ice (Sein et al., 2015). In ROM, REMO is 
coupled with the global ocean model, MPIOM that includes sea-ice, 
marine biogeochemistry modules and a global hydrological dis-
charge model and was dynamically downscaled matching the cli-
matic features of Central America (Cabos et al., 2018). Therefore, we 
directly used the ROM near-future climate projections as a possible 
future scenario for hydrological modelling until 2045.

After different tests with regional climate models detected that 
none was suitable for calibrating the hydrological model. How-
ever, the in situ precipitation from a meteorological station in 
Tempisque sub-catchment was used to compute the benchmark 
calibration model used for further evaluations.  

2.2.2 Hydrological modelling and drought assessment
The conceptual rainfall-runoff model HBV-Light
The HBV-Light model (https://www.geo.uzh.ch/en/units/h2k/Servic-
es/HBV-Model/HBV-Download.html) is a conceptual, semi-distributed 
model, widely used in hydrological forecast and water balance stud-
ies (Paredes et al., 2014). The model structure (Figure 2) incorporates 
the most important runoff generation processes with relatively few 
parameters (see Seibert & Vis, 2012 and Table 3 for more details). The 
model uses a soil water redistribution reservoir (3 calibrated parame-
ters: FC, LP and BETA) that determines the volume of water recharging 
(PERC) the two runoff generation reservoirs from which streamflow is 
generated. Runoff is generated from an upper, quicker (ALPHA and K1) 
and a lower, slower (K2) reservoir. A simple triangular algorithm with 
one parameter (MAXBAS) is used for streamflow routing. The previous-
ly described GPP were used as model input and tested against an in-si-
tu observational benchmark, in order to determine the most suitable 
product for drought analyses. A one-year warm-up period from 01 Jan-
uary 1993 to 01 January 1994 was used, allowing the model reservoirs 
to evolve from initial conditions (Montalván, 2017). 

Figure 2: Structure of the conceptual hydrological model HBV-Light with calibrated parameters in red according to Seibert & Vis (2012).
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Model calibration 
After a one-year warm-up period (1993-1994), the model was cal-
ibrated for in situ and all GPP data from 1994-2003. Due to the 
relatively short streamflow record, we did not apply a split-sample 
test for validation.  

The calibration process was carried in three steps:
I Calibration using in situ precipitation data as a benchmark for 

model evaluation.
II The benchmark calibration was refined using the posterior 

parameter ranges (5th and 95th percentiles) as parameter in-
tervals in a second calibration. 

III Each GPP was used as input for calibration using the parame-
ter intervals established in the second step. The 100 best pa-
rameters were subsequently used for streamflow simulation 
for each independently calibrated product, to calculate per-
formance statistics and to indicate the parameter uncertainty 
in form of the 5th/95th percentiles of simulated streamflow 
from the 100 best parameter sets (Nauditt et al., 2016). 

From the calibration of each global precipitation product and 
the benchmark, we analyzed the relationships between the cali-
brated parameters attempting to detect changes and co-linearity 
between parameters as an indicator of limited sensitivity. Finally, 
the global product with the highest logarithmic Nash-Sutcliffe 
(LogReff) performance criterion was selected for the hydrological 
drought analysis. 

This calibration process was carried out using a Monte Carlo pa-
rameter sampling strategy over 1 million iterations each (West-
erberg & Birkel, 2015). The initial parameter values (Table 3) es-
tablished by Birkel et al., (2012) in similar climate conditions were 
used. We additionally evaluated model performance using the 
Nash-Sutcliffe criterion (Reff), the modified Kling-Gupta efficiency 
(KGE) of Kling et al. (2012) and the Volumetric Error (VE).

Table 3: Initial parameter ranges and constrained parameter range after the first calibration step of HBV-Light in the Tempisque sub-catchment 
according to Birkel et al. (2012).

Parameter Initial lower Limit Initial upper Limit 5th Percentile 95th Percentile

Soil Moisture Routine

FC 0.1 1500 32.7 1390.3

LP 0.6 0.6 0.6 0.6

BETA 1 10 1.0 3.7

Response Routine

PERC 0 10 2.9 9.8

Alpha 0 1 0.1 0.2

K1 0.05 0.9 0.1 0.2

K2 0.0001 0.1 0.002 0.01

PCALT 0 50 8.1 48.7

Routine Routing MAXBAS 1 4 1.1 2.0

2.2.3 Hydrological drought detection and simulation
A hydrological drought event occurs when precipitation, soil 
moisture, water storage or discharge are below a defined thresh-
old (Van Loon & Van Lanen, 2012). A hydrological drought can be 
characterized by its duration (length of a dry spell in days), severi-
ty (deficit volume in mm) and intensity (deficit volume in mm per 
time unit) (Van Loon et al., 2014). 

• Duration (d) = days of drought below threshold.
• Severity (s) = ∑ ( d(t) * Δt ); where d(t) is the deviation from the 

threshold and Δt represents the time difference.  
• Intensity (i) = s / d; where s is the severity in mm and d is the 

drought duration in days.

In this study, a dynamic threshold level was used, based on the 
hydroclimatic seasonality (dry and rainy season) of the catchment, 
with a high probability of shifts during the seasons and the per-
sistence of droughts caused by a deficit of precipitation in the dry 
and/or rainy season.

The threshold level (Figure 3) was assumed as a dynamic 30-day 
moving window of the recorded 80th percentile from streamflow 
measurements, which is based on previous studies and the dy-
namic nature of the study streamflow regime (e.g. Van Loon & Van 
Lanen, 2012). A variable threshold can be chosen when seasonal 
patterns need to be taken into account (Van Loon, 2015). Accord-
ing to Hisdal et al., (2001) and Van Loon & Van Lanen, (2012) the 
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recommended method for capturing such hydroclimatic charac-
teristics is the minimum monthly moving threshold. The analysis 
was carried out for the observed streamflow and the simulation 
results from 1994 to 2003 (1993 was the model warming up) using 
the statistical language R according to Van Loon, (2015).

2.2.4 Future hydrological drought scenario 
Future hydrological drought periods were derived following the 
same methodology of the dynamic threshold level as described 

before. However, streamflows were simulated driving the calibrat-
ed benchmark HBV-Light model with the projected climate varia-
bles from ROM as input data. The precipitation data from ROM and 
the simulated streamflow data were divided in two equal periods 
(24 years each) for comparison, the historic period from 1994 to 
2019 and the projection from 2020 to 2045. Finally, the possible 
future hydrological droughts scenarios were characterized based 
on their intensity, severity and duration. 

Figure 3: Representation of the daily threshold level method with an arbitrary hydrograph.

Figure 4: Observed streamflow time series (black dots) against the simulated best-fit streamflow generated with the benchmark in situ data (red 
line). The 5th and 95th percentiles from the best 100 results indicate parameter uncertainty (salmon color).
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3 Results 

3.1. Streamflow modelling in the seasonally-dry tropics    
         with HBV-light
The model was capable of simulating the streamflow time series 
maintaining the climatic seasonality (Figure 4). The model was 
trained to match low flows using LogReff as calibration criterion 
and reproduced the major drought period recorded in 1998. De-
spite a more systematic underestimation of peak flows, the mod-
el was able to match the largest recorded peak flow in 2000. The 
best-fit Reff resulted in 0.59 for the benchmark model and a LogR-
eff of 0.68. The model also did not exhibit problems in reproducing 
the re-wetting period after the dry season. In general, the model 
seemed a well-balanced representation of the streamflow dynam-
ics of the Tempisque River over the study period from 1994 to 2003.

In comparison to the benchmark model, the calibration of each 
global precipitation product is presented in Table 4. The global 
products CHIRPS, TRMM and MSWEP resulted in best-fit KGE val-
ues of around 0.5. The PGF product showed a lower performance. 
All products resulted in acceptable volumetric errors with a max-
imum of 0.9. CHIRPS was identified as the most suitable global 
precipitation product for drought simulation due the highest 
LogReff value (0.65 – 0.5, table 4) compared with the results of 
the other products (TRMM, 0.65- 0.5; MSEWP, 0.3-0.003 and PGF, 
0.3 -0.01). Furthermore, CHIRPS has the longer record with respect 
to the similar TRMM performance and was subsequently used for 
hydrological drought simulation.

Table 4: Evaluation of the 100 best HBV-Light calibrated model parameter sets using the in-situ station data benchmark and the Global Precipitation 
Products used for calibration. The CHIRPS product with the best LogReff rating (0.65-0.5) is highlighted in bold.

Parameters Calibrated Products Maximum Value Minimum Value

Reff

Benchmark

0.6 0.5

LogReff 0.7 0.6

KGE 0.8 0.6

Volumetric Error 0.9 0.9

Reff

CHIRPS

0.5 0.4

LogReff 0.65 0.5

KGE 0.5 0.4

Volumetric Error 0.9 0.9

Reff

TRMM

0.5 0.4

LogReff 0.6 0.5

KGE 0.5 0.4

Volumetric Error 0.9 0.8

Reff

MSWEP

0.3 0.1

LogReff 0.3 0.003

KGE 0.5 0.3

Volumetric Error 0.9 0.7

Reff

PGF

0.1 -0.2

LogReff 0.3 -0.01

KGE 0.01 -0.2

Volumetric Error 0.9 0.5

The streamflow simulation based on CHIRPS as input data were 
compared visually to the benchmark simulation in Figure 5. Both 

precipitation inputs showed relatively similar low flow simula-
tions. However, CHIRPS did underestimate the high flows. 
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Figure 5: Visual comparison of the simulated best-fit streamflow time series from in situ benchmark precipitation input (red line) and from calibration 
with CHIRPS data (blue line). The black dots represent the observed streamflow.

Table 5: Hydrological drought parameters for the upper Tempisque river: duration, severity and maximum intensity using the observed streamflow, 
and simulations with in situ station data and with CHIRPS (1994 to 2003). The latter overall average drought parameters are compared to the major 
drought events with an absolute error estimate.

Hydrological drought parameters for the upper Tempisque river

Average Max Max Max Average Max

Duration Duration Intensity Avg. Intensity Severity Severity

(days) (days) (mm/day) (mm/day) (mm) (mm)

Observed Flow 91.4 307 0.9 2.2 27.9 108.1

Simulated Flow CHIRPS 78.5 358 0.7 1.6 20.6 147.2

Simulated Flow in situ Station 99.8 329 0.6 1.3 25.4 99.8

Major hydrological drought periods with absolute error estimates

Period
Average
Duration

(days)

Average
Severity

(mm)

Max Intensity
Average

(mm/day)

Absolute Error
Average

Duration (days)

Absolute Error
Average

Severity (mm)

Absolute Error
Max Intensity

Average (mm/day)

Observed Flow

1994

27.3 9.8 0.7

Simulated in situ 26.8 9.1 0.5 -0.5 -0.7 -0.2

Simulated CHIRPS 48 21 0.9 20.7 11.3 0.3

Observed Flow

1997

9.9 7.1 0.6 --- --- ---

Simulated in situ 18.9 9.3 0.7 8.9 2.3 0.2

Simulated CHIRPS 7.4 3.4 0.3 -2.5 -3.6 -0.2

Observed Flow

1998

10.5 2.3 0.3 --- --- ---

Simulated in situ 23.4 4.1 0.3 12.9 1.8 0.04

Simulated CHIRPS 9 1.9 0.3 -1.5 -0.4 -0.01

Observed Flow 2001
-

2002

4.8 1.2 0.3 --- --- ---

Simulated in situ 23.1 4.7 0.3 18.2 3.4 -0.05

Simulated CHIRPS 19.8 4.2 0.5 15 2.9 0.2
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Figure 6: Logarithmic scale representation of the variable threshold level for drought detection (red shaded area below the threshold in blue) for (A) 
the observed streamflow time series (black line), (B) the CHIRPSv2.0 simulated flow (black line) and (C) the simulated flow (black line) by in situ data.
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3.2 Hydrological drought analysis
The hydrological drought duration, severity and intensity are pre-
sented in Table 5. These parameters were derived from observed 
flow as a benchmark and from the HBV-Light best-fit streamflow 
simulations using CHIRPS and in situ precipitation observations. 
In Table 5, the observed flow showed an average drought dura-
tion of 91.4 days for the 1994-2003 study period with a maximum 
duration of 307 days and a maximum intensity of 0.9 mm/day.

We detected an overestimation of simulated drought severi-
ty compared to the streamflow derived severity. The maximum 
severity with CHIRPS resulted in 147 mm compared to only 108 
mm from observed streamflow. The simulated drought intensity 
resulted closer to the observed benchmark of 1.6 mm/day. Gen-
erally, the simulated results showed acceptable estimates of hy-
drological drought parameters in comparison to observed values. 
In Table 5, we show the absolute error of simulated hydrological 
drought parameters with respect to the observed benchmark for 
the major drought events of 1994, 1997, 1998 and 2001 to 2002.

The model simulations using in situ and CHIRPS data correctly 
identified the major observed drought periods during 1994, 1997-
1998 and 2001-2002. The panel A of Figure 6 shows the hydrolog-
ical drought detection from observed streamflow. In comparison, 
the hydrological drought analysis with CHIRPS resulted in slightly 
longer drought duration and larger maximum severity than ob-
served flow (Figure 6A). The in-situ precipitation input simulated 
drought (Figure 6C) particularly well and captured the minimum 
flow of the major drought 1997-1998.

3.3 Future hydrological drought 
The projected precipitation data from the Regional Climate Model 
ROM resulted in an overall trend of decreasing precipitation for 
the period from 2020 to 2045 compared to 1994 to 2019 (Figure 
7A). Mostly decreasing precipitation was projected for July corre-
sponding to the mid-summer drought phenomenon. The climate 
projections were used to simulate a future streamflow scenario 
with the calibrated HBV-light model (Figure 7B). The scenario re-
sulted in mainly lower streamflows at the beginning of the rainy 
season from April to June and for July, while the peak rainy sea-
son from August until October exhibited similar mean monthly 
streamflows.

The projected daily streamflow simulations from 2020 to 2045 for 
hydrological drought analysis are presented in Figure 8B in rela-
tion to the baseline from 1994 to 2019 (Figure 8A).

The hydrological drought analysis using the variable threshold 
level showed the main periods of streamflow deficit (Figure 8). 
Droughts described by the duration, severity and intensity for 
each period are summarized in Table 6. 

Generally, the hydrological droughts detected between 2020 to 
2045 increased in terms of the number of events, duration and 
severity compared to the baseline period 1994-2019. The latter 
increase was mainly caused by the projected lower precipitations. 
The major future drought periods detected were 2020-2021, 
2021-2022, 2025-2027, 2033-2034. The largest drought event was 
identified for 2039-2041 and 2042-2043 resulting in a severity 
exceeding 125 mm of deficit volume in both cases (Table 6) as 
well as the duration indicating higher persistence and multi-year 
droughts (duration > 700 days). 

Figure 7:  A) Projected monthly precipitation data by ROM for 2020 to 2045 compared to the baseline period of 1994-2019. B) Simulated monthly 
streamflow regime using ROM as input to the calibrated HBV-Light model for 2020 to 2045 with respect to the observed baseline period. 
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Figure 8: A) The drought analysis using the simulated best-fit baseline is compared to B) the projected future streamflow with identical threshold 
levels for 2020 to 2045 on a logarithmic scale.
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Table 6: Projection of hydrological drought (2020-2045) with respect to the best-fit simulated baseline from 1994-2019.

Simulated hydrological drought events (1994 - 2019)

Start Date End Date Duration (Days) Severity (mm) Max Intensity (mm/day)

22/8/1994 2/10/1994 42 11.0 0.4

20/8/1997 24/5/1998 278 48.5 0.5

25/10/1998 28/3/1999 155 13.9 0.2

9/10/2002 28/4/2003 202 21.2 0.2

21/3/2004 20/5/2004 61 3.4 0.2

28/7/2008 5/8/2009 374 77.2 0.5

3/8/2012 14/9/2012 43 10.1 0.4

11/5/2013 19/6/2013 40 4.8 0.2

28/6/2013 16/8/2013 50 9.2 0.4

10/9/2014 24/4/2015 227 16.9 0.2

16/6/2015 28/7/2015 43 7.0 0.3

27/5/2018 26/7/2018 61 5.8 0.2

15/5/2019 28/7/2019 75 8.0 0.2

Projected hydrological drought events (2020 - 2045)

6/7/2020 5/10/2020 92 40.2 0.7

15/10/2020 20/6/2021 249 32.9 0.3

24/6/2021 21/10/2021 120 44.3 0.6

30/11/2021 28/5/2022 180 17.6 0.3

25/4/2023 24/6/2023 61 8.1 0.3

16/6/2025 2/10/2025 109 39.7 0.7

5/12/2025 25/5/2026 172 16.3 0.2

20/7/2026 30/10/2026 103 45.3 0.6

2/11/2026 25/5/2027 205 38.2 0.4

16/1/2033 8/5/2033 113 2.3 0.1

1/11/2033 17/5/2034 198 6.8 0.2

12/10/2037 28/3/2038 168 17.8 0.2

16/10/2038 6/5/2039 203 38.7 0.4

9/5/2039 25/6/2041 779 215.0 0.8

6/5/2042 8/6/2043 399 127.9 0.7
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4. Discussion 

4.1. The performance of Global Precipitation Products ap-
plied to simulate streamflow with HBV-Light
The HBV-Light model simulations driven by GPP in the Tempis-
que subcatchment (Table 4) showed potential in the data scarcity 
context of the seasonally-dry tropics in Costa Rica. A similar con-
cept has been applied in other tropical regions with limited data, 
where GPP were evaluated with and without bias corrections 
and used for streamflow simulations via HBV-Light (Koutsouris et 
al., 2017). Zambrano-Bigiarini et al. (2017) highlighted the great 
opportunity that the use of GPP offers in conceptual hydrologi-
cal modelling. However, other authors reported that streamflow 
simulations strongly depend on the product type (Bitew & Ge-
bremichael, 2011) and that the global product must be careful-
ly evaluated (Zambrano-Bigiarini et al., 2017). Despite notorious 
data scarcity in Latin America (Birkel et al., 2019), we were in a 
position to use constrained historic daily rainfall and streamflow 
records (1993 to 2003) to benchmark the global product driven 
model against station data. The CHIRPSv2.0 product (Funk et al., 
2015) showed together with the TRMM product the best skill in 
reproducing observed streamflow dynamics similar to Zambra-
no-Bigiarini et al. (2017) who evaluated these products against 
the Chilean rainfall station network. We selected the CHIRPSv2.0 
product for hydrological drought analysis over TRMM despite sim-
ilar model performance due to the longer data record availability. 
Despite the challenge to achieve a good model performance in 
the tropics (Strauch et al., 2017; Zubieta et al., 2015) even with cor-
rected GPP input data (Strauch et al., 2017), our modelling showed 
a reasonably good performance (KGE = 0.6). The model succeed-
ed in simulating low flows particularly over the dry season (e.g. 
Figure 5), when hydrological models usually perform better for 
wetter periods (Pilgrim et al., 1988; Lidén & Harlin 2000; Nauditt et 
al., 2016). However, an initial quality check of the CHIRPSv2.0 data 
against the in-situ observations did apart from volumetric differ-
ences not show any temporal bias. Hence, the relatively accept-
able simulations using the global precipitation product allowing 
for a more in-depth hydrological drought analysis.

4.2. Simulating hydrological drought with Global Precipi-
tation Products
Clearly, the hydrological drought analysis will crucially depend on 
the model performance (van Loon & van Lanen, 2012) and we can-
not expect the GPP to outperform the overall better simulations 
with in situ data. Nonetheless, the model simulations correctly 
identified the observed drought periods of 1994, 1997-1998 and 
2001-2002 with the highest simulated severities, intensities and 
durations.  These periods were related to strong El Niño events 
(2002-2003) and very strong El Niño (1997-1998) events emphasiz-
ing the potential drought behavior during such warm sea surface 
temperature (SST) episodes (Wolter & Timlin, 2011; NOAA, 2017; 
Muñoz-Jiménez et al., 2018). The hydrological droughts simulat-
ed by CHIRPSv2.0 (Table 5) were benchmarked against an aver-
age duration of 91 days during the study period 1994-2003, with 

a maximum duration of 307 days and with maximum intensities 
of 0.96 mm/day using observed streamflow as a benchmark. The 
model’s absolute errors showed despite a variability from event 
to event a tendency of a slightly overestimated drought duration 
and under-estimated drought severity. In direct comparison, the 
CHIRPSv2.0-driven model showed less errors predicting drought 
duration compared to the deficit volume (severity) with errors up 
to 50 %. Similar to Van Loon and Van Lanen (2012), our analysis 
identified the rain deficit as one of the main causes of hydrologi-
cal drought in regions with pronounced wet and dry seasons. Our 
results, additionally pointed in the same direction compared to 
findings from Hoyos et al., (2019). They found that rain and subse-
quently groundwater recharge strongly controls the occurrence 
of droughts by simulating synthetic scenarios in the seasonal 
tropics of Colombia.

4.3. Predictive capability of the model to estimate future 
hydrological drought
The RCM model ROM simulated precipitation regime revealed a 
slight decrease in precipitation from 2020-2045 (Figure 7A), com-
pared to precipitation for the period 1994-2019. Similar to climate 
simulations from Neelin et al. (2006), where precipitation trends 
showed a drying trend for the Caribbean and Central American 
region. Moreover, the ROM model previously showed to match 
the intra-annual climatic behavior of rainfall in the Central Ameri-
can Dry Corridor (Cabos et al., 2019) with a characteristic bimodal 
distribution with two rainfall maxima in June and September/Oc-
tober (Taylor & Alfaro, 2005; Hidalgo et al., 2019). The precipitation 
decreases used as input to the calibrated HBV-Light model subse-
quently resulted in less future streamflow as a possible future sce-
nario. Water deficit for particular months  are often evidenced in 
future scenarios (Avilés et al., 2020), despite undeniable uncertain-
ty in such projections. Here, such a deficit was identified around 
the first rainfall peak in May/June (Figure 7B). Comparable results 
were presented for a case study in Cuba, where future projections 
suggested a regional decrease of about 38 % of the mean annual 
precipitation and up to 61 % in streamflow (Montecelos-Zamora 
et al., 2018). According to Hidalgo and Alfaro (2012), changes in 
the magnitude and the seasonal cycle of precipitations most like-
ly affect Central American ecosystem dynamics and water availa-
bility with most importantly, an increase in water scarcity in the 
region. Central America will experience a drought intensification 
(Imbach et al., 2018; Rauscher et al., 2008), as supported by our 
simulated future droughts. As shown in Table 6, increases in dura-
tion and severity were evident, which was also found for a larger 
scale study by Hidalgo et al., (2013). Reduced precipitation and 
strengthened mid-summer drought may have consequences for 
farming and energy production (Imbach et al., 2018), and accord-
ing to Quesada-Montano et al., (2018), projecting hydrological 
droughts is necessary for an improved water management in the 
socio-economically vulnerable region of Central America. Finally, 
this study might pave the way towards an early drought warning 
system, which is fundamental to proactive decision making and 
disaster preparedness (AghaKouchak et al., 2015).
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5. Conclusions 
We used and evaluated GPP as input to the conceptual hydrolog-
ical model HBV-Light for hydrological drought analysis in the sea-
sonally-dry and data scarce tropics of Costa Rica. The use of GPP 
was encouraged due to limited information for modelling. We 
found that the CHIRPSv2.0 product showed the best skill to rep-
resent the Tempisque streamflow compared to in situ benchmark 
precipitation data. The hydrological model driven by CHIRPSv2.0 
successfully simulated observed streamflow variability and subse-
quently allowed detection of hydrological droughts. A relatively 
successful simulation of historic streamflow also gave confidence 
in projecting potential future hydrological drought behavior. We 
specifically conclude that:
• Global Precipitation Products can provide an alternative source 

of input data for hydrological modelling if carefully evaluated 
against in situ data.

• The CHIRPSv2.0 product showed the best skill in simulating 
low flows in the Tempisque catchment at a relatively high spa-
tial resolution with daily data.

• The conceptual model HBV-Light was able to reproduce ob-
served streamflow with the minimum parameterization (8 cal-
ibrated parameters) and resulted in a maximum KGE of 0.8.

• The model driven by CHIRPSv2.0 data correctly detected the 
major drought events.

• The model driven by CHIRPSv2.0 data also correctly simulated 
the drought duration, but care has to be taken in using the 
simulated drought severity.

• The simulated drought severity suffered from errors of 50% 
overestimating the volume deficits.

• According to the results obtained future hydrological droughts 
will increase in duration and severity.

Our novel drought research in the tropics provides some alterna-
tives in the implementation of hydrological models based on GPPs 
as a tool for drought management in areas where the amount and 
timing of precipitation is closely related to hazards and economic 
sustainability.
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