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This study focuses on the influence of some of the relevant parameters of biomass pyrolysis on a 
fuzzified solution of the Distributed Activation Energy Model (DAEM) due to randomness and 
inaccuracy of data. The study investigates the fuzzified Distributed Activation Energy Model using 
the fuzzy Weibull distribution. The activation energy, frequency factor, and distribution variables of 
the 3-parameter Weibull analysis are converted into a non-crisp set. The expression for the fuzzy 
sets, and their α-cut are discussed with an initial distribution for the activation energies following 
the Weibull distribution function. The thermo-analytical data for pine needles is used to illustrate 
the methodology to exhibit the fuzziness of some of the parameters relevant to biomass pyrolysis.  

Research article

Many engineering systems that need to be controlled or simply are 
analyzed by the introduction of an indefinite value for parameters 
in a prototype. For a concrete mathematical problem, it is necessary 
to tackle any anomaly in the given data. The basis of incompatibility 
reveals that our faculty for envisaging some precise and relevant 

axioms becomes misleading while the critical level of the compounded 
complexity of the system is not reached, and, proceeding further, 
the precision and significance do not co-exist [1]. The ramifications 
of fallacy in a deterministic model is of the least importance. The 
conundrum of this state is whether substituting the rigid imprecise
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data for fixed values will influence the outcome. There is much 
evidence [1]-[3] that tells us not to rely upon the hammer principle 
(i.e. when you only have a hammer, you want everything at hand 
to be a nail). Sometimes incoherent outcomes are obtained from 
models when the arbitrarily imprecise variables are assumed to 
be the parameters of the model. Uncertainty in the measurement 
of variables is a problem if it shrinks your ability to dichotomize 
crucial choices. However, the stochastic approach makes a model 
decision difficult [4], although qualitatively, there are various facets 
of vagueness which are beyond the probabilistic scope. Under certain 
circumstances where accuracy of concepts is subjected to debrief, 
veracity of statements and judgements become alienated through 
prediction of events. Consequently, this led to the discovery of a new 
methodology of incorporating this non-stochastic imprecision into 
mathematical models. Eventually, the concept of fuzzy set theory 
[4], [5], a theory of belief and evidence [6]-[8], was introduced to 
evaluate of randomness in any given data.

The aim of the present study is to use this theory to obtain a non-
stochastic outcome for the Distributed Activation Energy Model 
(DAEM). The kinetic parameters as well as distribution parameters 
of the Weibull distribution were fuzzified using a fuzzy relationship. 

The present paper is presented as follows: Section 2 introduces 
the evolution of the DAEM, the Weibull distribution, the numerical 
solution of the DAEM using asymptotic expansion and fuzzy sets; 
Section 3 involves application of   thermo-analytical data from pine 
needle pyrolysis; Section 4 illustrates the numerical implementation 
of the fuzzy system on the predefined problem of the kinetics of 
biomass; and the last section is the conclusion of the study.

2.1 Model-based approach 

For this investigation of fuzzy set theory, the Distributed Activation 
Energy Model (DAEM) or Multiple Reaction Model (MRM) is adopted 
to evaluate the randomness in estimating kinetic parameters. 
Equation (1) represents the solid-state kinetic reaction:

     
        (1)

Here subscript i represents one of several constituents of biomass, 
vi  (mg) is the total release mass of  the ith constituent, t (s) is time, 
A0i  (min-1) is the frequency factor, Ei (kJ mol-1) is the activation energy, 
R (kJ/mol-K) is the gas constant and T is the absolute temperature.

If the number of decomposition reaction steps is high, it can be 
presumed that the activation energies of these reactions follow a 
continuous distribution function, and the reactions can be expressed 
as a function of the activation energy.

          (2)

Equation (2) shows the change in the volatile fraction of biomass with 
respect to the distribution function.

Mainly, f (E) is assumed to be a Gaussian distribution, while the 
validity of the distribution of activation energy for asymmetric can 
be examined with the help of a positively skewed function, therefore, 
the ‘3-parameter type’ Weibull distribution function is assumed i.e. a 
Gaussian function [9]. 

The final expression for the DAEM for non-isothermal time dependent 
temperature regime is obtained using equations (1) and (2), giving 
the following: 

       (3)

where, θ ( K/min) corresponds to the heating rate, E (kJ/mol) represents 
the activation energy and A is the frequency factor ( s-1). A constant 
value of the frequency factor (A) is assumed for every decomposition 
reaction with various activation energies [10]. The value of the pre-
exponential factor can also be expressed as a function of activation 
energy or temperature (the fluctuant pre-exponential factor leads to 
different algorithms to treat the DAEM. Corresponding references 
ought to be mentioned).

The initial Weibull distribution of the activation energy can be 
expressed as:

         (4)

where η is the scale parameter; λ is the shape parameters; γ is the 
threshold or location parameter and 0 ≤ γ ≤ E, 0 < λ, 0 < η.  λ is 
dimensionless and η, γ,  and E are expressed in kJ/mol. 

The mean of the distribution is equal to the mean activation energy 
and is given by: 

         (5)

The variance of the distribution is given by:

         (6)

where, Γ(2/λ+1) is the Gamma function.

The Weibull distribution has some interesting properties and 
generates a variety of distributions [11].  For λ =1, the Weibull 
distribution coincides with the exponential distribution. The Weibull 
distribution curves are positively skewed for values of λ > 1. As the 
value of λ increases, the Weibull distribution tends to approach the 
Gaussian distribution more and more closely [12].  Selection of the 
threshold value for the activation energy γ, implies that reactions 
with activation energy less than that of γ will not occur. Thus, the 
lower limit of the outer dE integral in equation (3) should be replaced 
with E= γ. Then, the non-isothermal DAEM involving the Weibull 
distribution is obtained and given as follows:
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  (7)

2.2 Asymptotic solution of the Distributed Activation Energy Model 

Approximation to the double exponential term in equation (7) is 
considered first. 

        (8)

To proceed in a systematic manner, it is useful to consider the typical 
values of the parameters and functions on which it depends. The 
range of the frequency factor (A) is 1010-1013 s-1, whereas the activation 
energies lie in the domain of 100-300 kJ mol-1.  The temperature 
scale defined for pyrolysis is in the range of 293 to 900 K. In order to 
demonstrate the approach, the non-isothermal regime was used for 
our problem.   
where,

T= ɵt           (9)

ɵ = Heating rate (°C min-1)
t = time (min)

The double integral in equation (8) can be approximated with the 
help of an asymptotic scheme for solving the double exponential 
part of the DAEM, where the parameter ‘E/Rɵl’  is assumed to be large 
and thus, the integral is approximated using Taylor series expansion 
around the maximum value of the function ɵl .

(10)

assuming the typical values of  E/RT~ 10, where A.t = 1010. The large 
values of both parameters make the function vary  rapidly with E. 
Rewriting equation (10) as:

The function, (-ARɵt2/E) e-E/Rɵt , inside the exponential is converted into 
a step size variable Ew and the central value of the activation energy Es. 

For E much lower than the stationary value, Es , the function is nearly 
zero; whereas for E much higher than Es,  the function approaches 
one. The function changes from zero to one in a range of E values 
with a step size of approximately Ew of Es . Let,

where,
 

      (11)

Since the behavior in the neighborhood of Es is the sole interest, 
equation (11) is expanded with the help of a Taylor series:

g (E)~g(Es )+ (E-Es ) g’ (Es )+...     (12)

The initial value problem of the function g (E) is stated as:

g (Es) = 0  and  g’ (Es )=  (-1/Ew)

Putting these boundary conditions into equation (12), we get

Es=Rɵt W(τ)       (13)

       (14)

where  τ=A.t;  (Time is rescaled as a product of frequency factor and 
time).

Here W(τ) represents the Lambert W function and is considered to 
one of the roots of equation (11)

WeW=x

Approximation of the Lambert W function depends on the value of x 
[13] and is given by

In order to apply the asymptotic approach, the Weibull distribution is 
assumed as the initial distribution f (E), centered around E0 with the 
standard deviation σ.

     (15)

where,

Energy is rescaled into a non-dimensional factor by y, which can be 
expressed as:

where, α=  Υ/η

     
     (16)
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              (17)

Putting k = y - 1 into equation (17),we  have:

Wide distribution case 

A distribution is said to be a wide distribution when the relative width 
of the distribution function is wider than that of DExp. It implies that 
kw √α «1 [14]-[17].

Using a step-function in equation (17), we have:

It is clear from the expression above that the (1-G(k)) term in the 
integral represents a complementary distribution function, hence it 
can be estimated easily. Whereas the second integral is multiplied by 
a function that is very small everywhere except in the vicinity of ks. 
Therefore, this can be approximated using a Taylor series expansion 
around k = ks .

Let

Using a Taylor series, f (x) is expanded around k = ks , giving the 
following:

where

Simplifying equation (18), we have:

A0 ≈−0.5772, A1 ≈−0.98906, A2 ≈−1.81496, A3 ≈−5.89037.

where the remaining integrals are evaluated by
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2.3 Fuzzy set

Fuzzy set theory was proposed in 1965 [1], relying on the fact that 
the degree of membership and non-membership should not be 
more than one. In practical situations an object may or may not be 
a member of set A to a certain degree and it is not to be ousted 
completely. In other sense, there is degree of belongingness of an 
object in the family.  

The motive of introducing fuzzy sets is to demarcate gradual 
membership to a set without sharp boundaries. The subtlety of a 
fuzzy set is that it somehow resembles the human representation of 
reality rather than a clear-cut representation. Philosophical argument 
concerning the existence of an entity with the help of the faculty 
of dichotomizing is non-realistic, and practicality is not part of 
fuzzification. In a fuzzy set, the extent of membership counts in real 
numbers varies from 0 to 2 rather than end points. In other words, 
a fuzzified variable of a set A is not the null set, but a membership 
function ξ :A → [0,1]. 

2.4 Fuzzy Weibull Distribution 

Due to vagueness and inaccuracy in data sets, the estimation of precise 
values for distribution parameters (λ, η) and kinetic parameters can 
often become very difficult. To handle this situation, shape and scale 
as well as kinetic parameters can be replaced by the trapezoidal fuzzy 
numbers   , ῆ, Ã  and Ẽ In this case, the fuzziness of a distribution is 
given by:

or

  (19)

The general expression for fuzzy probability is given as:

for all α, where,

λ̃
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Let the fuzzy set of a trapezoidal fuzzy number be given by:
Ẽ = {a1 a2 a3 a4 a1’ a2 a3a4’ }
Ã = {b1 b2 b3 b4 b1’ b2 b3 b4’ }
ῆ = {c1 c2 c3 c4 c1’ c2 c3 c4’ }
λ̃ = {d1 d2 d3 d4 d1’ d2 d3 d4’ }

and define its membership ξẼ, ξÃ, ξῆ, ξ
˜
λ   and non-membership ϕẼ, ϕÃ, 

ϕῆ, ϕλ̃  in the following manner:

The α-cut of the above functions is obtained as follow:
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A pine needle sample is used to evaluate thermal behavior and 
simulate the same results with the help of fuzzy set theory. To attain the 
pyrolysis conditions, nitrogen is considered as a purge and protective 
gas to ward off the ingression of pollutants. Before initializing the 
experiment, the furnace space is purged to eliminate the remaining 
oxygen. The volumetric rate of nitrogen of 200 mL min−1 is used to 
remove the product gases. Thermocouple type ‘R’ is used to measure 
the furnace temperature. The experiments were performed using a 
thermogravimetric analyzer (SII 6300 EXSTAR). A sample of 10.54 mg 
of pine needles is heated in a crucible pan of alumina at a heating 
rate of 10 °C min−1. To prevent the buoyancy effect, correction 
measurements are used. For fuzzification of the kinetic parameters, 
an algorithm is designed by using MATLAB software.

Elemental composition and calorific value of the pine needle sample 
are shown in Table 1. These were computed with the help of a bomb 
calorimeter at a constant volume.

*- Volatile Matter 
**-Higher Heating Value

Assume the distribution parameters (ῆ, λ̃ ) and kinetic parameters (Ã 
, Ẽ) are represented as the trapezoidal fuzzy number. The parametric 
values evaluated after fuzzy analysis are taken at α=0.

Let Ẽ(kJ/mol) = [(310, 311, 314, 316)], Ã = [(1026, 1028, 1030, 1031)], λ̃  
=[(168, 170, 171, 175)]  and ῆ(kJ/mol) = [(3.1, 3.09, 3.06, 3.04)]. The 
influence of the fuzzy parameters on the final solution of the DAEM is 
expressed through members of the fuzzy sets Re1 , Re2 , Re3 and Re4. 
The Re1 and Re2 are the fuzzified members corresponding to 
membership function (ξ); while Re3 and Re4 correspond to the non-
membership function. As the temperature increases, the fuzzy set 
shifts to the right and therefore the remaining mass fraction ‘v’ shifts 
up for non-membership function.

After the fuzzification of the scale parameter (η) of the fuzzy Weibull 
distribution, the fuzzy set of membership and non-membership 
numbers are obtained, as shown in Figure 1. Had the nature of the 
scale parameters been crisp, all the members of the fuzzy set would 
have been merged to a single member and the behavior of v with 
respect to the distribution parameter would remain concealed. As 
the deviation of the membership function extended from the non-
membership functions, the relative change in the remaining mass 
fraction v becomes narrow. The effect of the fuzzy shape parameter 
of the fuzzy Weibull distribution is illustrated in Figure 2. At the

3. Application and Computational Methodology

Table 1: Chemical composition of pine needles 

Figure 1: The effect of fuzzified scale parameter (η) of the fuzzy 
Weibull distribution on the numerical solution of the DAEM.

Figure 2: The effect of fuzzified shape parameter (λ) of the fuzzy 
Weibull distribution on the numerical solution of the DAEM.

Figure 3: The influence of the fuzzy set of the frequency factor (A) on 
the numerical solution of the DAEM.

Figure 4: The effect of fuzzified upper limit of ‘dE’ integral (E) on the 
numerical solution of the DAEM.

4. Numerical Illustration
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different members of the fuzzy set of the shape parameters λ, it can 
be seen that the v curves provide a good agreement with the thermo-
analytical data. The influence of the fuzzified frequency factor on the 
final solution of the DAEM is shown in Figure 3. It can be seen that 
the remaining mass fraction curves shift to the left as the domain of 
the fuzzy set of A is extended. During the initial stage of pyrolysis, the 
remaining mass fraction remains in the neighborhood of one. The 
effect of the fuzziness of the upper limit of the “dE” integral on the 
numerical results is shown in Figure 4. The behavior of the remaining 
mass proportion is similar at the beginning and completion of the 
pyrolysis reactions, whereas there is a slight shift of inflexion points 
to the left with the increase in α-cut.

The fuzzy system has been successfully applied to the DAEM. 
Whenever randomness or fuzziness is encountered in the parametric 
values of any system, conventional methods become feasible. 
Thus, the fuzzy method was successfully invoked to overcome the 
complication of inaccuracy and imprecision in the kinetic parameters 
of biomass pyrolysis. 

The benefits of categorizing the modelling parameters of biomass 
pyrolysis as member and non-member functions of fuzzy sets has 
overridden the demerits of the crisp-kinetic parameters which are 
indistinctive and unable to delineate the behavior of biomass pyrolysis 
due to Boolean logic. The fuzzy sets have handled the randomness 
or fuzziness to a desired level of accuracy, which is in turn helpful 
in making the analysis more realistic and practical. The influence 
of membership and non-membership functions on the remaining 
mass proportion is demonstrated in this study. Using this method, 
the fuzziness of the DAEM has been shown. The precise values of 
the kinetic parameters as well as the distribution parameters were 
obtained in the narrow width of the fuzzy subsets.
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