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  Keywords 

This paper proposes the study of the application of fuzzy logic on the relevant parameter of biomass 
pyrolysis. The frequency factor, the upper limit of ‘dE’, and the scale and shape parameters of the 
fuzzy Gamma distribution were fuzzified in order to estimate randomness and to accommodate 
realistic values. The distribution function, f (E), of the activation energies was assumed to follow the 
fuzzy Gamma distribution. Thermo-analytical data was found experimentally with the help of TGA/
DTG analysis. The approximated solution of the DAEM was obtained using the asymptotic approach.  

Research article

In various engineering systems, there is some level of imprecision 
regarding the assignment of values to some dependent parameters. 

While dealing with a mathematical model, we have to pay special 
attention to imprecision in data. The principle of incompatibility 
defines when the complexity of a system increases. Our aptitude 
to formulate precision and meaningful statements decreases up to 
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a threshold beyond which precision and significance become 
mutually exclusive characteristics [1]. It is not always feasible to 
believe the result obtained by a deterministic model is 100% correct. 
The main problem is whether replacing stubbornly imprecise data 
by fixed data will influence our investigation or not. If you substitute 
imprecise data with fixed values in a model, you will leave no choice 
to the model except churning out sometimes meaningless outcomes. 
Talking about false certainty is bad science and it can be dangerous 
if it stunts articulation of critical choices. Although probability 
theory claims to model decision making imprecision [2], there are 
qualitatively different facets of indeterminacy which are not covered 
by probabilistic tools. In some situations where doubt arises about 
the exactness of a concept, correctness of statements and judgments 
have little to do with the occurrence of events, the backbone of 
probability theory. Such circumstances motivate many researchers to 
initiate investigation: how to incorporate non-stochastic impression 
into mathematical models [3], [4]. Fuzzy set theory [1], [5], belief 
theory and evidence theory [6]-[8], proceed along this line.

If we talk about fuzzy logic, which is a multi-value logic obtained 
from fuzzy set theory, interacting with human reasoning that ranges 
from ‘almost certain’ to the ‘very unlikely’. As opposed to a classical 
propositional approach (true/ false), the membership value of fuzzy 
logic variables are not only 0 and 1 but can vary between 0 and 1 [9]. 
In order to understand it in much better way, we take an example 
of a 100 ml glass filled with 40 ml of water. Then we may consider 
two outcomes: Empty and full. The fuzzy set defines the meaning 
of both the outcomes. The glass can be defined to be 0.6 empty 
and 0.4 full. As the concept of emptiness is rather subjective, thus it 
depends on the observer or designer. The vagueness of emptiness 
and fullness can be tackled by using a membership function where 
the glass can be treated full for all values up to 50 ml. It is important 
to comprehend that fuzzy logic uses truth degree as a mathematical 
model of the vagueness phenomenon, whereas probability is a 
mathematical model of ignorance. A probabilistic model defines 
scalar variable which shows the fullness of the glass as a random 
event, and conditional distribution describes the probability that the 
glass is full to a given specific fullness level.  This model, however, 
has no meaning unless some event occurs, i.e. after a few minutes, 
the glass can be half empty. Uncertainty and the time frame are the 
criteria of probability.  An observer can randomly select the level 
of water in the glass, and achieve the condition as a distribution 
over other deterministic observers. Consequently, probability and 
fuzziness are not common but are two different concepts. They seem 
similar on the surface, as they use the same interval of real numbers 
[0, 1]. Many researchers have used the aforementioned facts in the 
mathematical modeling and analysis of engineering problems [10], 
[11].
In the present study, the aim is to implement a mathematical model 
of the vagueness on the relevant parameters of biomass pyrolysis. 
The crisp values of the kinetics as well as distribution parameters 
are fuzzified. The distributed activation energy model (DAEM) is 
approximated using asymptotic expansion. Note that the results of 
this article are used:
- To estimate the realistic value of kinetic parameters of loose biomass 
using the Gamma distribution, 

- To identify the interval of variation (degree of truthiness in linguistic 
reasoning) of relevant parameters for biomass pyrolysis, and 
- To see effect of fuzzification on the numerical solution of the DAEM.

Ew Step size width (kJ/mol)
Es Central Value (kJ/mol)
Y(x) Lambert function
~ Symbol denotes fuzzy variable
H(x) Heaviside step function
θ Heating rate (°C/min.)
T Temperature (°C)
R Universal Gas constant (kJ/mol-K)
DExp Double exponential term
f(E) Distribution function
λ Shape parameter
η Scale parameter (kJ/mol)

3.1 Fuzzy sets

The concept of fuzzy set theory was originally given by Zadeh [12] 
based on the assumption that the degree of membership is equal to 
one minus the degree of non-membership.  In practical situations an 
object may or may not be a member of set A to a certain degree. In 
other words, some doubt about the degree of belongingness may 
exist. The idea of fuzzy sets is in tune with human representation 
of reality, as it is more about nuances than clear-cut definitions. 
Some related philosophical issues ranging from the ontological level 
to the application level via the epistemological level may be found 
elsewhere [13].
In a fuzzy set, the degree of membership of an element is expressed 
by any real number from 0 to 1 rather than the limiting extremes. More 
formally, a fuzzy set of a set A≠ϕ is characterized by a membership 
function ξ: A →[0, 1].

3.2 Membership and non-membership functions

It can be noted that the activation energy, frequency factor and 
variance are not clearly defined and are fuzzy, so are replaced with 
fuzzy numbers as:

and membership               and non-membership 

are defined in the following manner:
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The α-cut of the above functions is obtained as follows:

4.1 Distributed Activation Energy Model

The Distributed Activation Energy Model or Multiple Reaction 
Model assumes that many decomposition reactions take place 
simultaneously. It can also be understood as a summation of an 
unlimited number of parallel single step decomposition reactions, 
where each reaction has the following form:

     
       (1)

where subscript i means one of several constituents , vi is the total 
release  mass o ith constituent, t is time, A0i is the  frequency factor, Ei 
is the activation energy, R is the gas constant and T is the absolute 
temperature.
If the number of decomposition reactions involved is numerous, it 

can be assumed that the activation energies of these reactions are 
distributed, and the reactions can be expressed as a function of the 
activation energy.

          (2)

The right-hand side of equation (2) expresses the fraction of maximum 
mass loss v* in the given interval of activation energy. Usually, f (E) 
is taken to be a Gaussian distribution. However, with the selection 
of an appropriate distribution function for the molecular activation 
energies, it is advantageous to select an asymmetric distribution 
function for the molecular activation energies. The distribution of 
activation energy is considered to be a Gamma distribution function, 
over a symmetric function, i.e. Gaussian. Moreover, the Gamma 
distribution is mathematically flexible.

The DAEM equation for the non-isothermal time-dependent 
temperature regime can be derived by combining equations (1) and 
(2) using the Gamma distribution and it is given as:

        (3)

where θ (°C/min) is the heating rate, E  is activation energy and A is 
frequency factor (s-1). The value of the frequency factor (A) is assumed 
to be constant for every decomposition reaction with various 
activation energies [14]. The value of the pre-exponential factor can 
also be expressed as a function of activation energy or temperature.
The initial distribution of the activation energies can be expressed as:

        (4)

The mean and the variance of the distribution are given by equations 
(5) and (6), respectively.

          (5)

          (6)

4.2 Asymptotic expansion

The integrand in equation (3) consists of two parts. The first part (DExp) 
of equation (3) depends on time through the range of temperatures 
experienced experimentally by the biomass samples. The second 
part is invariant to time and depends on the distribution of volatiles 
in the sample. The behavior of the temperature-dependent part is 
considered first, and approximations that are derived are useful for 
solving the double term. Only the ramping temperature history is 
investigated, together with the Gamma distribution of the volatiles.
Approximations to the double exponential are considered, where 
T varies linearly with time and has a constant slope, indicating the 
heating rate (θ) of the sample. E can take any positive value. The 
approach considered here is similar to that of Niksa and Lau [15], but 
uses more systematic and more accurate approximation.
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For approximation of the double exponential term, the first step is to 
suppose the typical values of dependent parameters and functions. 
The frequency factors (A) are typically in the range of A~1010 - 1013 s-1, 
whereas the domain of activation energies lies between 100 and 300 kJ/
mol. The temperature dependence, however, is considered according 
to the specified experimental requirement. It varies from biomass 
to biomass, but typically the range of temperature varies as follows:

Note: The DAEM model is also valid to combustion-related problems, 
where the extensive range of temperatures is used, thus it i  useful to 
extrapolate the simplification mode in the higher specified regime of 
temperatures, as mentioned above.

In order to demonstrate the asymptotic technique, the ramping 
profile of temperature has been considered as follows:

If the temperature is assumed to ramp linearly, the double exponential 
term (DExp) becomes:

The integral in the exponent is approximated using the conventional 
Laplace approach, where the parameter    is assumed to be large 
and hence the dominant contribution from the integral is when 
temperature is near its maximum.

Also,       (7)

Thus, equation (7) can be written in the form:

where the function switches rapidly from zero to one with the increase 
in activation energy E, over a range of step sizes Ew around the central 
value Es ,which can be approximated as follows:

Assuming,

equation (7) can be rewritten as:

where

Expand g (E) with the help of the Taylor series around Es

    

         (8)

Using equation (8) and the predefined function g(Es), Es and Ew are 
chosen such that

After solving these, we have:

where Y(x) is Lambert W function defined to be one of the real roots 
of the equation:

Approximation for the small and large values of x (corresponding to 
short and long times) [6].

and

DExp has been varied as a smooth step-function rising rapidly (for the 
large values of tA) from zero to one in a range of activation energies 
of the step width Ew around the central value E=Es, where both Es and 
Ew vary with time. In equation (3), DExp is multiplied by the initial 
distribution f(E). The initial distribution is assumed to be centered 
around a value E0 and has a width designated by σ. The distribution 
can be either wide or narrow. When the distribution function f(E) 
is relatively wide in comparison to the width of DExp, the total 
integrand behaves similarly to an initial distribution f(E). However, as 
time proceeds, it is progressively shifted from the left by the step-like 
DExp. The location of the maximum of the total integrand can move 
significantly, and the shape becomes skewed.

From equations (3) and (7), the remaining mass fraction equation can 
be expressed as:

Let

where Es and Ew are functions of t, as mentioned earlier.
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Energy is now rescaled as                               so that the problem becomes:

         (9)

      (10)

where the constant parameter                                             . Note that in practice α<<1

Time is also rescaled as    τ=At
For linear ramping temperature  T=θt

where Y is the lambert W function.

Note: The ramping temperature can be generalized to the case of 
non-zero initial temperature T0 by simply replacing t with  
everywhere, else analysis will be changed.

Approximations to equation (10) are studied by considering the initial 
distribution, centered around y= 1 with width     while DExp 
jumps from zero to one around y=ys with a width yw.

An initial distribution much wider than DExp is considered. In this 
limit, as previously discussed, DExp jumps from zero to one near y= 
ys in a manner that has previously been approximated by the step 
function [16]-[19].

In order to apply this, the limit        is taken

Equation (9) can be rewritten in the form:

where Γ(λ,σ2 ys ) is the upper incomplete Gamma Function

The second integral in this equation is a cumulative distribution 
function, and therefore easily computable. Many previous 
simplifications (the step-function approximations) used this same 
term and neglected the first integral. The first integral term is 
the initial distribution multiplied by a function that is very small 
everywhere except in a neighborhood of size yw around the point 
y=ys. This integrand can, therefore, be approximated by expanding 
the initial distribution term with the help of a Taylor series about y=ys

Substituting           in equation (9), we have:

or

  (11)

We know that

w h e r e        is the lower cumulative distribution for 
Gamma random variables, and       is the lower incomplete 
Gamma function.

The remaining integral terms are evaluated by the expression:

4.3 Fuzzy Gamma distribution function

If the remaining mass fraction of biomass is modeled by the Gamma 
distribution, then

     (12)

The fuzzy probability of obtaining a value in the interval [n, m], is as 
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for all α, where

 

For application purposes, the experiment was conducted for the 
non-isothermal pyrolysis of pine needles. It is to be noted that the 
result of this study was used in the fuzzification process to obtain 
the realistic and authentic values of the parameters. Table 1 indicates 
the chemical composition which is also obtained with the help of 
CHNO-S analysis of pine needle samples.

*Volatile matter **High heating value

6.1 Numerical illustration

Assuming that the initial distribution of the activation energy follows 
the Gamma distribution with fuzzy scale parameters  , Ã and 
Ẽ taken as the trapezoidal fuzzy number, the values of parameters 
obtained after fuzzification are taken at α= 0. 

The effect of fuzzified parameters with temperature on the numerical 
solution of the DAEM is depicted by means of fuzzified bands Re1, Re2, 
Re3, Re4. The Re1 and Re2 represent the fuzzified bands corresponding 
to the membership function; whereas Re3 and Re4 correspond to the 
non-membership function. After the fuzzy analysis of the relevant 
parameters of biomass pyrolysis, four bands were obtained. If the 
nature of the parameters had been crisp, all four fuzzified bands 
would have converged to a single band. At the beginning of the 
pyrolysis process, the remaining mass proportion must be close 
to 1. However, in  Figure 1, it can be seen that the remaining mass 
proportion is less than one for the fuzzy set (12.28,15.329). In order to 
obtain the most realistic and closely proximate results, the fuzzy set 
of the upper limit of the ‘dE’ integral should belong to (12.28,15.329). 
The effect of the fuzzified frequency factor (A) is illustrated in Figure 
2. According to these curves, the increase in the width of the fuzzy 
set causes v curves to move towards right. The effect of the fuzzified 
scale parameter on the numerical solution is depicted in Figure 3. It 
can be seen that the resulting mass fraction curve is shifted up the 
temperature scale with the increase in the size of the fuzzy set. The 
effect of the fuzzy scale parameter (    ̃) is shown in Figure 4. 

A slight increase in the width of the fuzzy set of   r e d u c e s 
the slope of the resulting mass fraction curves. In add i t ion 
to the present study, several other methodologies and conceptual 
studies have been carried out to evaluate kinetic parameters with 
the help of the model-fitting method, viz. DAEM. Cai and Lui [20] 
implemented Simpson’s 1/3 rule to evaluate the DExp. It is worth 
mentioning here, however, that the dependence of estimated values 
relies strongly on the truncation error, arising due to the upper limit, 
the lower limit and the maximum value of the function, all of which 
lead to a drastic deviation from the realistic outcome. The other 
method used for this problem is the asymptotic technique. In the 
present approach, the asymptotic technique has been implemented 
in symmetric as well as asymmetric functions to find an accurate and 
realistic value of the function. To some extent truncation error has 
been reduced by the asymptotic approximation of DExp [21]-[24], 
yet there is some problem attached to the approximated solution of 
the DAEM. Furthermore, the crisp nature of the solution has a degree 
of randomness and is sometimes unrealistic due to the likelihood of 
the existence of more than one solution for the same function. In 
2017, Dhaundiyal and Tewari trifurcated biomass into its three major 
constituent parts, namely Cellulose, Hemicellulose and Lignin [2]. 
They derived the approximate solution for each of constitutes and 
then summed them. The solution obtained through this technique 
of separately analyzing each component worked effectively [25]. In 
2016, Dhaundiyal and Singh [26] analyzed the symmetric function 
using fuzzy sets to estimate to what extent the same outcome will be 
valid, converting the result into a crisp set with the help of boundary 
limits and an alpha-cut. They succeeded in doing this, but the fact 
that the experimental data can be either asymmetric or symmetric 
was overlooked in their study.

5. Application

Table 1: Chemical composition of pine needles 

6. Results and Discussion
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Figure 1: The effect of fuzzified upper limit of “dE” integral of the DAEM (E) (kJ mol-1 ) on 
the numerical results

Figure 2: The effect of fuzzified upper limit of “dE” integral of the DAEM (E) (kJ mol-1 ) on 
the numerical results

Figure 3: The effect of fuzzified upper limit of “dE” integral of the DAEM (E) (kJ mol-1 ) on 
the numerical results

Figure 4: The effect of fuzzified upper limit of “dE” integral of the DAEM (E) (kJ mol-1 ) on 
the numerical results

http://jnrd.info/2016/01/10-5027jnrd-v6i0-01


37Journal of Natural Resources and Development 2017; 07: 30 - 37DOI number: 10.5027/jnrd.v7i0.04

In this article the relevant parameters of the DAEM are considered 
to be fuzzy in nature in order to incorporate the realistic situation 
of the possible existence of uncertainty. Whenever, the distribution 
of activation energies, the frequency factor, and the parameters 
of the distribution function are vague and fuzzy, the conventional 
system is found to be unfeasible. Therefore, in order to overcome this 
complication, we have successfully implemented fuzzy theory. The 
use of fuzzified kinetic parameters in the DAEM has overcome the 
disadvantages of the crisp parameters, since the crisp values do not 
provide the practical approach to solving the kinetics problem. The 
fuzzy sets handled the uncertainty and vagueness to a certain desired 
level, which in turn helped in making our analysis more realistic and 
authentic. The membership and the non-membership function of 
the fuzzy sets were computed. Using the fuzzy Gamma distribution, 
the relevant parameters of biomass pyrolysis were approximated 
to some other realistic values. It can be seen that the membership 
function provides good agreement with the thermo-analytical data 
for a relatively large range of activation energies for which the DAEM 
closely approximates the experimental results.
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