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The Philippines is experiencing recurring drought events accentuated by the increasing incidence of the 
El Niño phenomenon, particularly due to its position in the equatorial region. To address the negative 
effects of unpredicted drought events, especially in light of perceptible climate change, the present 
research developed a methodology for drought assessment in the Cagayan River Basin (CRB) by 
combining remotely-sensed data including 16-day MODIS Vegetation Indices (VIs) (250 m resolution), 
monthly Terrestrial Water Storage Changes (TWSC) in 1° grids from NASA’s Gravity Recovery and Climate 
Experiment (GRACE), and daily in-situ measurements of rainfall and water levels. Time series data of 
these parameters from 2002 to 2011, a period when major and minor drought events occurred in the 
country, were statistically analyzed. To smooth out short-term and random variations in the individual 
time series, a 3-period running average was first applied to each time series. The resulting time series 
datasets were then subjected to cross-correlation analysis to examine whether the VI anomalies and 
TWSC values were statistically related to rainfall and water level. The cross-correlation results showed 
that VI anomalies and TWSC values exhibited strong correlation with in-situ rainfall and water level 
measurements, having coefficients greater than 0.90 and low time lags ranging from 1 to 3 months 
during drought events. From this observation, lag-normalized correlation analysis between TWSC and 
VI anomalies was developed to characterize the onset of drought events and identify drought-prone 
areas. The majority of the areas identified as susceptible to drought are located in the provinces of 
Cagayan and Isabela, with areas of 2,596 ha or 68.21 % of the total land area of Cagayan, and 3,751 
ha or 56.89 % of the total land area of Isabela. The findings in this research can serve as a basis for 
proper water resource allocation, especially in the identified drought-prone provinces in the country.
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Drought is defined by the United Nations Convention to Combat 
Desertification (UNCCD) as “a naturally occurring phenomenon that 
exists when precipitation has been significantly below normal recorded 
levels, causing serious hydrological imbalances that adversely affect 
land resource production systems” [1]. It is a normal and recurring 
climatic event that is considered as “a creeping phenomenon” since 
its effects often take weeks or months to manifest. In addition, the 
beginning and ending of drought events are difficult to determine 
[2] as well as the quantification of thier severity [3]. According to 
the Intergovernmental Panel on Climate Change (IPCC) [4], drought 
events of different spatial and temporal scales are expected to 
increase due to the variability in precipitation patterns.

In the Philippines, several El Niño Southern Oscillation (ENSO) 
episodes in the central and eastern equatorial Pacific have caused 
minor to major droughts in vulnerable provinces, impacting mostly 
agriculture, livestock, fisheries, and forestry [5]. The increasing 
frequency of drought can result in loss of land productivity, crop 
failure, loss of biodiversity and fragile ecosystems, and even loss 
of human lives and properties [1]. Drought can affect not only the 
natural environment, but also socio-economic aspects, such as 
health, power generation, and food security. However, decision-
makers, stakeholders and local people in drought-prone areas are 
not sufficiently equipped with efficient drought monitoring systems 
and preparedness plans to minimize the adverse effects of such 
phenomena.

Drought events in the Philippines are monitored by PAGASA 
Climatology and Agrometeorology Branch (CAB) based on downscaled 
predictions from global climate centers in the USA, Australia, Great 
Britain, and Japan [6]. CAB also uses different drought indices such as 
Moisture Availability Index (MAI), Yield Moisture Index (YMI), Rainfall 
Extreme Index (REI), Generalized Monsoon Index (GMI), and Percent 
of Normal [7], which are mainly derived from precipitation data. A 
recent research combined remotely-sensed Normalized Difference 
Vegetation Index (NDVI) and Land Surface Temperature (LST) from 
MODIS to derive the Standardized Vegetation-Temperature Ratio 
(SVTR) to forecast and monitor agricultural drought in the Philippines 
[8].

Generally, drought monitoring schemes commonly rely heavily on 
precipitation data and do not incorporate deep soil moisture and 
groundwater storage conditions [9]. Due to intensive logistical 
requirements needed to continuously monitor actual soil moisture 
and groundwater levels through field measurements, the need to 
incorporate remotely-sensed satellite images to supplement ground-
based weather data is needed. This is necessary to detect the onset 
and identify the location and severity of drought events, for a 
spatially extensive, close to real-time, and comprehensive assessment 
of current drought conditions [10], [11]. With the advancement of 
Remote Sensing (RS) systems, drought metrics with improved spatial 
detail, without the need for extensive meteorological precipitation 
networks, have become one of the most promising tools for large-
scale drought monitoring [12].

The relationship between RS-derived Terrestrial Water Storage (TWS) 
anomalies and Vegetation Indices (VIs) has been explored to test 
their potential use in drought monitoring in Western and Central 
Europe [13]. It was observed that the correlation between ground 
water storage anomalies and VIs becomes stronger when warm 
seasons start. However, considering the spatial resolution of available 
remotely-sensed TWS and VI data (e.g. 250-m pixel size and 1° grid 
size), their use for drought studies are mostly confined to large 
river basins and national-scale analysis. Thus, there is still a need to 
assess the accuracy and applicability of these datasets for local-scale 
drought monitoring in smaller river basins.

The present research aims to assess the applicability of combining 
remotely-sensed data and in-situ measurements of rainfall and water 
levels for the identification of drought-prone areas in a local river 
basin in the Philippines. Specifically, it intends to develop a method 
of drought assessment by utilizing freely-available remotely sensed 
data.

The methodology used in this study is presented in Figure 1. The 
general procedures include the selection of the study area, data 
acquisition, pre-processing, statistical analyses, identification 
of drought-prone areas, characterization of drought onset and 
progression, and validation of the results.

2.1  Study area

The criteria in selecting the study area for this research include: (1) an 
area where periodic drought occurs with varying levels of severity; (2) 
an area of considerably large size considering the resolution of the 
datasets that will be used; and (3) an area with existing monitoring 
stations that have historical rainfall and water level data. The Cagayan 
River Basin (CRB) was selected as the study area for this research 
since it is the largest river basin in the country, it is frequently affected 
by drought events, and has the highest number of rainfall and water 
level stations.

The CRB is located in the north-eastern part of Luzon, Philippines, 
within latitudes 15° 52’ N to 18° 23’ N and longitudes 120° 51’ E to 
122° 19’ E. It is the largest river basin in the country with 33 sub-
basins and approximately 505 km of streams, covering approximately 
27,280 km2 of drainage area [14], [15]. The extent of the CRB, 
as shown in Figure 2, encompasses parts of nine (9) provinces. It 
is bounded in the north by the coastline of the Babuyan Channel
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where inland waters are drained, in the south by the Caraballo-
Maparang Mountains, in the east by the Sierra Madre Mountains, 
and in the west by the Cordillera Mountains [16]. It is relatively flat in 
the central plains, and hilly to mountainous in the western, southern, 
and eastern sides [17]. The majority of land cover types in the CRB 
are croplands, range lands, and forests. It is considered vulnerable to 
recurring drought since it is composed of dry sub-humid agricultural 
areas with seasonal aridity [1].

2.2  Data Acquisition and Pre-processing

2.2.1  Watershed, sub-basins and HRU delineation

The watershed delineation and its sub-basins were extracted using 
the 90-meter Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM) of the study area using the ArcSWAT extension 
tool in ArcGIS®. Hydrologic response units (HRUs) were generated 
by combining the soil, slope, and land cover maps of the CRB. The 
slope map of the CRB was derived from SRTM DEM, while the most 
recent soil type map published in 2003 was obtained from the Bureau 
of Agricultural Research Spatial Analysis and Information Systems 
Laboratory for Research and Development (BARSAIL for R&D) of 
the Department of Agriculture (DA). The general land cover map of 
the CRB generated by J. Principe [18] was produced by performing 

Maximum Likelihood Classification (MLC) to mosaicked Landsat 7 
ETM+ images acquired in February and March, 2009. The HRUs were 
considered as the minimum mapping unit, defining the smallest level 
of analysis performed in this study. Since this research deals with the 
use of Vegetation Indices (VIs), 453 agricultural HRUs, 444 range land 
HRUs, and 354 forest HRUs, totaling 1,251 HRUs were retained for 
analysis.

2.2.2  MODIS Vegetation Indices (VIs) and VI anomalies

Vegetation Indices (VIs) are used in many applications, including 
drought monitoring and assessment. Specifically, MODIS Level 3 VI 
products containing Normalized Difference Vegetation Index (NDVI) 
and Enhanced Vegetation Index (EVI) images can be used to assess 
the spatial and temporal dynamics of vegetation [19], which may 
be associated with the occurrence of drought events. These indices 
exhibit strong relationships with rainfall data, as presented in various 
studies [20], [21]. Table 1 shows the descriptive parameters of the 
MODIS VI datasets used. 

The NDVI is computed as the ratio of the difference and sum of near 
infrared (N) and red (R) reflectance values [22] for each pixel, i:

          (1)

EVI incorporates the blue reflectance band to reduce atmospheric 
effects and correct soil background [22]:

       (2)

where C1 and C2 are the coefficients of the aerosol resistance term, 
which uses the blue band (B) to correct aerosol influence on the red 
band, L is the canopy background brightness correction factor, and G 
is the gain factor. For MODIS, the values used are L=1, C1=6, C2=7.5, 
and G=2.5 [22].

In order to better relate the VIs with drought occurrences, VI anomaly 
data were calculated and used as effective indicators in assessing 
drought conditions and mapping of drought-risk areas [23]-[25]. 
The NDVI and EVI anomalies were calculated in this study using the 
equation below:

         (3)
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Table 1: Description of MODIS VI data
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where ΔVIi,j and VIi,j  are the VI anomaly and the VI value for the ith  

pixel on the jth day of the year, respectively; and VImean,i,j  is the average 
of the VI values for the ith  pixel on the jth day of the year, applied for 
the whole time series [23]. Using the online USGS Global Visualization 
Viewer (GloVis) tool, a total of 262 MOD13Q1 16-day VI images from 
February 2000 to June 2011 were downloaded. The NDVI and EVI 
layers were extracted and transformed from sinusoidal projection to 
WGS-84 geographic coordinate system using the MODIS Conversion 
Toolkit of ENVI®. The layers of each VI type were then stacked and 
the Savitzky-Golay filter was applied to improve the quality of the 
images [26], [27]. The means of the NDVI, NDVI anomaly (NDVIA), EVI 
and EVI anomaly (EVIA) were calculated for each HRU and the values 
were tabulated in spreadsheets to produce the time series datasets. 
Homogeneity tests were performed in order to ensure that no major 
shift in the values with respect to time occurred for the whole time 
series and only individual trends were present in the data [28].

2.2.3  GRACE Terrestrial Water Storage Changes (TWSC)

Terrestrial Water Storage (TWS) refers to the total amount of water 
stored in the surface and sub-surface [29] of land regions. It is a 
vertically integrated measure of groundwater, soil moisture, snow 
and ice, permafrost, surface water, and wet biomass or vegetation 
water [30], [31], over a given period of time. The most dominant 
factors in TWS variability are seasonal groundwater changes (ΔGW) 
and soil moisture changes (ΔSM) [27]. Thus, the simplified equation 
for Terrestrial Water Storage Changes (TWSC) is:

TWSC = ΔGW + ΔSM         (4)

The GRACE twin satellites, a joint mission of NASA and the German 
Aerospace Centre (DLR) launched in March 2002, aims to measure 
small monthly variations in the Earth’s gravity field [32]. The processing 
of raw spherical harmonic coefficients into Level 3 monthly equivalent 
water thickness enables reliable detection of global mass distribution 
and spatio-temporal variations in TWS [33]. Various studies verified 
the correspondence of GRACE TWSC with real groundwater data, as 
well as with model-simulated hydrologic parameters in large basins 
[30], [34]-[37]. For the present study, monthly GRACE TWSC data 
processed by Sean Swenson with the support of NASA’s MEaSUREs 
Program [34], [38], were downloaded from the Jet Propulsion 
Laboratory’s TELLUS website. The descriptive parameters of the 
data are shown in Table 2. The TWSC values were expressed as the 
difference between the masses for each month and the average from 
January 2003 to December 2007 based on the documentations of 
the processing conducted by Swenson [34], [38]. The values for the 

two (2) tiles covering CRB were scaled and the monthly TWSC time 
series data was generated (Figure 3). Homogeneity tests were also 
performed on the TWSC time series.

2.2.4  Ground-based rainfall and water level data

In-situ rainfall (RF) and water level (WL) measurements were gathered 
from the Climate Data Section of the Philippine Atmospheric, 
Geophysical and Astronomical Services Administration (PAGASA-
CDS) and the Bureau of Research Standards of the Department of 
Public Works and Highways (DPWH-BRS), respectively. Lists of 
drought events and dry spells from 1950 to 2011 were also obtained 
from PAGASA-CDS. Daily rainfall data in millimeters were available 
for three (3) weather stations from 2000 to 2009, while daily water 
level data in meters from three (3) gauging stations were provided 
from 2001 to 2006. The data were averaged to obtain 16-day and 
monthly RF and WL values to form to the temporal resolution of the 
MODIS VI and GRACE TWSC images used for the study.

2.3  Statistical Analyses

2.3.1  Running averages cross-correlation analysis 

To smooth out short-term and random variations in the individual 
time series, 3-period running averages were first applied to each 
time series. This process involves the averaging of the values per 3 
successive months to highlight the temporal trends in the data. The 
resulting time series datasets were then subjected to cross-correlation 
analysis to examine whether the VI anomalies and TWSC values are 
statistically related to rainfall and water level, and can therefore be 
used in assessing drought events. The cross-correlation between two 
(2) time series having the same time step and duration is the product-
moment correlation, which is a function of time lag [39]: 

         (5)

Table 2: Description of GRACE TWSC data

Figure 3: Time series plot of monthly GRACE scaled TWSC from 2002 to 2011
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where cuu(0) and cyy(0) are the sample variances of the two (2) time 
series, ut and yt, and cuy(k) is the cross-covariance function. The cross-
correlation value is simply the correlation coefficient with the second 
parameter lagging in time. The values range from -1 to 1, where 
-1 indicates a strong inverse relationship, 1 means a strong direct 
relationship, and 0 signifies that the parameters are not related.

All the running-averaged time series pairs were subjected to cross-
correlation analysis implemented for 1-year, 2-year, and whole time 
ranges to check for short-term and long-term correlation trends. 
The correlation coefficients and corresponding time lags of the first 
positive peak in the values were analyzed to check for indications of 
drought events. 

2.3.2  Lag-normalized correlation analysis between TWSC and VI 
anomalies 

To be able to integrate VI anomalies and TWSC per HRU into a 
single index that may be used in drought analysis, lag-normalized 
correlation was developed, which can be computed by dividing 
the correlation coefficients (ruy) of VI anomalies and TWSC (i.e. 
time series pair, k) by the time lag (laguy) plus 1. The lag should be 
plus 1 to avoid indeterminate solutions, as shown in Equation 6:

       (6)

When the correlation coefficients are high and the time lags are low, 
the values that will be computed for the lag-normalized correlation 
will also be high, which indicates higher probability of an incoming 
or current drought event. Otherwise, the lag-normalized correlations 
will be moderate to low corresponding to lesser chance of drought 
occurrence for that particular period. 

2.4  Identification of Drought-prone Areas 

The calculated 1-year and 2-year TWSC-NDVIA and TWSC-EVIA lag-
normalized correlation values for the HRUs were expressed in deciles 
to consistently scale the data in all maps based on the frequency of 
occurrence of each lag-normalized correlation sum. The HRUs within 
the 8th, 9th, and 10th decile were considered as drought-prone. In 
total, four (4) sets of drought-prone areas were identified by this 
technique based on different VI anomaly types (i.e. NDVI, EVI) and 
time series intervals (i.e. 1-year, 2-year). The corresponding drought-
prone barangays were then mapped based on the identified drought-
prone HRUs.

2.5  Characterization of Drought Onset and Progression 

Drought onset and progression may be characterized by 
performing lag-normalized correlation analysis between TWSC and 
VI anomalies using running 12-month time series. However, it is 
necessary to assess the applicability of this method in characterizing 
the onset and progression of drought events to identify 
whether it has a potential value for early warning applications.
The cross-correlation analysis between the 3-month running average 

time series of TWSC and VI anomalies were also performed using a 
sliding time range of 12 months instead of the fixed, non-overlapping 
1-year and 2-year ranges. The 12-month sliding time series covering 
years 2002 to 2011 employed 1-month time steps to assess whether 
the method would be effective in understanding the behavior of the 
lag-normalized correlation values before, during, and after the actual 
drought periods in the CRB. Using two (2) test HRUs (i.e. HRU 8-1 and 
HRU 28-1) which are both drought-sensitive, proximate to rainfall 
and water level stations, and within each of the two (2) TWSC grids, 
the correlation coefficients and time lags of the first positive peaks 
in the cross-correlation results were identified and lag-normalized 
correlations were computed.

2.6  Validation

Aside from the correspondence between observed and reported 
drought occurrences, supplementary datasets on the quarterly volume 
of crop production available from 2000 to 2012 were used for further 
validation of the results. The crop production data in the identified 
drought-prone provinces were evaluated to assess any matches to 
the trends in the lag-normalized correlations calculated previously.

3.1  Statistical Analyses

3.1.1  Running averages cross-correlation analysis

The results of the running averages cross-correlation analysis 
between RF-TWSC, WL-TWSC, RF-VI anomalies, WL-VI anomalies, 
and TWSC-VI anomalies are presented and discussed below. 

Rainfall, water level, and TWSC

From the results of the analysis, it was evident that RF and TWSC 
exhibit high positive correlation for all weather stations since excessive 
or deficient RF can lead to a corresponding increase or decrease in 
TWSC. For the 1-year time series, the year 2002 obtained the highest 
correlation coefficient of 0.932 with a 1-month time lag, as seen in 
Table 3. The 2002-2003 time series has the highest correlation of 
0.826 with a 1-month time lag amongst all 2-year intervals. From 
historical records, severe droughts from May 2002 to March 2003 
and June 2009 to June 2010, moderate events from October 2006 
to July 2007 [1], [40], and localized dry spells in 2005 [41] occurred 
in the Philippines, all of which specifically affected the provinces 
covering the CRB. The findings were all prominent for the recorded 
drought periods since, as rainfall deficiency persists, the decline in 
groundwater storage follows, therefore increasing the correlation 
coefficients and lowering the time lags. 

Similarly, WL and TWSC gave very strong correlations 
for all stations, mostly for years 2002 and 2003, with the 
highest value of 0.983 for year 2002. The time lags were also 
better than RF-TWSC, mostly having only a 0 to 1 month 
response delay. Years with high coefficients and low time lags

3. Results and Discussion
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corresponded to drought periods since the relationship between 
groundwater and water level becomes stronger as extended periods 
of insufficient rainfall occur.

Rainfall, water level, and VI anomalies

Since the vegetation types and conditions vary across the HRUs in 
the CRB, the result of the cross-correlations between rainfall/water 
level and VIs gave inconsistent trends. This can be attributed to the 
insensitivity of VIs in detecting water shortage when vegetation is 
senescent or when the vegetation coverage is low, as well as other 
limitations related to the seasonality of vegetation [13]. The periods 
of low rainfall and water levels positively correspond to the gradual 
decrease in vegetation health; and while this extends for a longer 
period, the correlation becomes stronger. Based on [20], lag times 
between rainfall and VI anomalies range from 0 to 2 months since 
rainfall deficiency can only affect plant growth after 1 to 12 weeks. 
This trend was consistent for both NDVIA and EVIA, having 0 to 2 
time lags and high correlation coefficients as can be seen in Figure 
4, highlighting their potential in the identification of drought events.

Table 3: Time lags and correlation coefficients between monthly ave-
rage rainfall (Echague station) and TWSC (TWS-A station) time series 
datasets

Figure 4: Plot of time lags (left) and correlation coefficients (right) between RF and VI anomalies for different time series ranges

Figure 5: TWSC-EVIA 1-year correlation (left) and time lag (right) maps
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Similarly for the WL and VIs, the peak of correlation coefficients with 
0- to 1-month time lags were also detected for the years 2002, 2003, 
and 2006, with 2002 having the highest coefficient of 0.802. 2009 
was also identified as a period with high correlation (0.783) but is not 
consistent for all stations, unlike the other years, which may be due to 
the strong typhoon ‘Pepeng’ that occurred in October 2009 [42] that 
brought excessive rains in the study area and disrupted the patterns.

TWSC and VI anomalies

It was distinctly observed that when the first positive peak in the 
cross-correlation between TWSC and VI anomalies consistently has 
a lower time lag, there is a recorded drought occurrence. Time lags 
become shorter when extended periods of dryness occur because 
the gradual decrease in the TWSC correlates better with the slow 
decline of vegetation health expressed as VI anomalies. This trend 
was observed between TWSC and VI anomalies for the years 2002, 
2003, 2006, 2007, and 2010, which are all periods of drought. Figure 
5 shows the 1-year TWSC-EVIA correlation and time lag maps in the 
CRB. 

From the maps, it can be seen that higher correlation coefficients 
above the critical value 0.576 (i.e. 95 % confidence interval from the 
Pearson’s correlation coefficient table) and lower time lags (i.e. < 3 
months) were associated with the droughts that occurred especially 
in 2002-2003 and 2010. High coefficients with low time lags primarily 
occurred in the central part of the basin during severe droughts, where 
the terrain is flat and the land cover types are mostly agricultural and 
range lands. During localized and moderate droughts, some areas 
covered by existing irrigation systems obtained low correlations.

It was evident that both the coefficients and time lag values should be 
considered in monitoring drought conditions since there are periods 
and locations where the coefficients alone cannot detect droughts. 
Given that TWS is highly associated with ground water storage levels 
and the amount of rainfall, higher correlations between TWSC and 
VI anomalies can be an indicator of an impending hydrological 
drought. It was also observed that even though both NDVIA and EVIA 
successfully identified the drought periods, TWSC-EVIA exhibited 
better correspondence with known drought events, temporally and 
spatially. 

3.1.2  Lag-normalized correlation analysis between TWSC and VI 
anomalies

In order to integrate the correlations and lag times of TWSC and 
VI anomalies obtained from Section 3.1.1, the lag-normalized 
correlations of TWSC and VI anomalies were assessed for each HRU. 
Since the trend shows that high correlation coefficients with low time 
lags between TWSC and VI anomalies correspond to drought periods, 
their ratio can serve as an effective indicator of drought events and 
a basis for mapping drought-prone areas in the CRB. The results 
significantly improved for TWSC-NDVIA, although TWSC-EVIA still 
gave better results. For the 1-year and 2-year time series of TWSC-
EVIA, the drought-affected areas became more pronounced not only 
in severe occurrences, but even for years with reported localized and 

moderate droughts. The progression of drought events can also be 
seen from the 2-year time series trends based on the increase of 
drought-associated areas shown in Figure 6, since most drought 
events encompass two successive years.

The drought that peaked in 2002 was proven to be the most extensive 
and severe occurrence in the CRB based on coverage of the affected 
areas, followed by the event in 2010. It was also apparent that the 
peak of droughts in 2006-2007 occurred in 2007. In fact, a second, 
separate drought event happened from June to July 2007, because 
of an abnormality in the transition between El Niño and La Niña 
[42]. Similarly for 2010, the 2010-2011 lag-normalized correlations 
showed larger drought-affected areas compared to 2009-2010, due 
to the occurrence of typhoons during the last quarter of 2009 which 
most likely affected the trend in the correlations.

After analyzing the lag-normalized correlation trends for all HRUs 
separated per land cover type, per slope, and per soil type, it was 
found that range lands, located in areas with 0-17 % slope composed 
of loam, silty loam, or clay loam soils are the most sensitive to 
drought. This means that these types of HRUs respond to changes 
in the amount of rainfall with the lowest time lags and with higher 
correlation coefficients. The high correlation and low time lags 
between TWSC and VI anomalies can be attributed to the land 
cover’s dependence on natural sources of water [43], [44], warmness 
and dryness of the air and land [45], and the water-holding capacity 
of the soil [46]. 

3.2  Identification of Drought-prone areas 

Drought-prone areas were identified using the sum of 1-year and 
2-year lag-normalized correlation values between TWSC and VI 
anomalies. The areas identified using TWSC-NDVIA were spatially 
contiguous and mostly in the central portion of the river basin; while 
those identified using EVIA consist of additional small and distributed 
HRUs mostly on the western side of the CRB, covering range and 
agricultural lands with slopes of 0-17 %. It was observed that EVI is 
more responsive to drought than NDVI for range lands due to its 
sensitivity to soil background. 

Figure 6: Percent area of high lag-normalized correlations for 2-year 
time series
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Between NDVI and EVI anomalies, the latter generally gave more 
consistent and realistic results based on correct association with 

different land cover types, especially for the 2-year time series. A 
higher percentage of drought areas detected using EVI anomalies 
matched the previously identified drought-sensitive areas. The 
summary of the identified drought-prone barangays in the CRB using 
2-year lag-normalized correlations of TWSC and EVIA is presented in 
Table 4 and the corresponding map is shown in Figure 7. Most of the 
barangays identified as drought-prone are located in the provinces 
of Cagayan and Isabela. These provinces were the most affected by 
drought events based on current historical records [36], [37].

3.3  Characterization of Drought Onset and Progression

The statistical analyses performed identified historical drought 
events in the CRB from 2000 to 2011, both spatially and temporally. 
The cross-correlation analysis of paired parameters exhibited strong 
relationships between each other, which intensified during extended 
dry periods. Lag-normalized correlations of TWSC-VI anomalies 
depicted trends in the values associated with spatial characteristics 
and distribution of the affected areas. The test HRUs used, HRU 8-1 
and HRU 28-1, were analyzed to confirm the potential of the method 
for drought onset and progression monitoring.

After analyzing the plots of TWSC-NDVIA (Figure 8) and TWSC-
EVIA correlation coefficients, time lags, and running 12-month lag-
normalized correlations for the test HRUs, it was observed that the 
correlations and time lags of severe droughts that peaked in the 3rd 
quarter of 2002 and first quarter of 2010 obtained high correlations 
and low time lags consistently for both VI types. Although the 
correlations were also high during the moderate drought in 2006 to 
2007, the time lags observed were also high because of the shorter 
temporal extent of the drought event that occurred. All other time 
intervals showed variable peaks and troughs in the correlations 
and time lags, which can mainly be attributed to the occurrence of 
excessive rains in short intervals due to typhoons.

The drought event that peaked in January to February 2007 started 
to see a gradual increase in the lag-normalized correlations of TWSC-
NDVIA 1 month after the identified beginning of the drought period 
(i.e. 2 months before the peak) for both test HRUs. For TWSC-EVIA, 
test HRU 8-1 in Cagayan obtained a 2-month delay (i.e. 1 month

Table 4: Summary of identified drought-prone barangays in the 
CRB per province

Figure 7: Drought-prone barangays in CRB

Figure 8: Plot of running 12-month lag-normalized correlations of TWSC-NDVIA for HRU 8-1
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before the peak), while no delay was observed for the test HRU 28-1 
in Isabela (i.e. 3 months before the peak). Similarly, the drought 
event that peaked in January to March 2010 exhibited a gradually 
increasing trend for both test HRUs, but with several intermediate 
fluctuations, 2 months after the specified start of the drought period 
for the TWSC-NDVIA (i.e. 5 months before the peak), and 4 months 
for the TWSC-EVIA (i.e. 3 months before the peak). 

Even though there were time delays on the detection of the drought’s 
onset, the potential use of the running lag-normalized correlation 
method for early warning is still highly relevant. This is because all 
observations showed that drought can be detected by looking into 
the trend of the lag-normalized correlations months before the 
peak period of the phenomenon; specifically about 1 to 5 months 
before the peak of the drought event, depending on its severity and 
temporal extent. As also observed from the plots, the progressing 
drought is indicated by the continuous, gradual increase in the 
trend or approximately constant level of the running lag-normalized 
correlation values, disregarding the minimal troughs and peaks in 
between. When the values start to decrease, the amount of rainfall 
can be said to be going back to normal, thus indicating the end of 
the drought phenomenon.

The trend lines can also be used to detect the potential occurrence 
of droughts earlier; nevertheless, the lag-normalized correlation 
plots must be filtered and processed first, especially EVIA, to ensure 
that the changes in the values can only be associated to drought 
episodes. However, the patterns present in the lag-normalized 
correlations of TWSC-VIA can already be used to characterize the 
onset and progression of drought events in the CRB.

3.4  Validation

The quarterly volume of production of palay (i.e. rice) and corn in 
drought-prone provinces were assessed to show whether the trends 
correspond with the actual drought periods and other detected 
fluctuations in the results of running lag-normalized correlations 
between TWSC and VI anomalies. The plot of the crop production for 
the province of Isabela is shown in Figure 9. 

In most instances, relatively lower than normal volumes of palay and 
corn production for each province coincided with the periods of 
moderate to severe drought. There were declines in the volume of 
production of both palay and corn, not only during the actual and 
identified drought events in the CRB (i.e. 2002 to 2003, 2006 to 2007, 
2009 to 2010), but also for the other intervals associated with local 
droughts (i.e. 2005) and typhoons/floods, as suggested by the high 
lag-normalized correlations. In addition, it was observed that in some 
cases, the decline in crop production was reflected only in the next 
quarter because of the differences in the type and growth status of 
the crops during the event.

The drought in 2009 to 2010 led to the greatest decrease in crop 
production in all provinces, followed by the one that occurred in 2002 
to 2003; while the other drops in values were relatively minimal. It 
was also confirmed that Isabela and Cagayan are the most drought-

susceptible provinces, since aside from having the largest drought-
prone areas, the relative decrease in the volume of crop production 
during the drought events were also the highest. With this additional 
validation, it can be concluded that running lag-normalized 
correlation analysis between GRACE-derived TWSC and MODIS VI 
anomalies can be used as an effective indicator to characterize water-
related events such as droughts, which in turn affect crop production.

This research aimed to assess the applicability of integrating remotely 
sensed data and in-situ measurements of rainfall and water levels for 
the identification of drought-prone areas in a local river basin in the 
Philippines. Specifically, it intends to develop a method of drought 
assessment by utilizing freely-available remotely sensed data.

The findings showed that combining GRACE-derived TWSC and 
MODIS VIs using the methodology presented in this research can 
provide a means for the characterization and assessment of drought 
occurrences in the Cagayan River Basin. The method developed 
using lag-normalized correlation analysis between TWSC and VI 
anomalies can be used in monitoring and characterizing the onset 
and progression of drought events, as well as in the identification of 
drought-prone areas. The reliability of the method to assess drought 
events was verified through the strong correlation of TWSC and VI 
anomalies with in-situ rainfall and water level measurements. There 
were observed response delays between variations in TWSC and VIs 
from precipitation deficiencies, which were found to range from 0 to 
3 months during drought periods. The parts of the CRB located in 
flat areas (0-17 % slope), having natural vegetation cover (e.g. range 
lands), and with loam, silty loam, or clay loam soil types are the most 
drought-sensitive areas and can potentially be used in monitoring 
drought. In addition, it was identified that most of the drought-prone 
barangays derived from the lag-normalized correlations between 
TWSC-EVIA are located in Cagayan and Isabela, with areas of 2,596 
ha or 68.21 % of the total land area of Cagayan, and 3,751 ha or 
56.89 % of the total land area of Isabela. These findings are important 
for various stakeholders in regard to proper resource allocation, 
planning, and decision-making related to drought.

The combined use of GRACE TWSC values and MODIS VI images 
can be considered as a promising tool in assessing the temporal and 
spatial extent of droughts, especially when incorporated with other

Figure 9: Quarterly volume of palay and corn production in Isabela 
from 2000 to 2012

4. Conclusions
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ground-measured hydro-meteorological parameters such as rainfall 
and water level. Since monitoring schemes usually depend on 
precipitation-derived indices alone, the use of RS-derived indicators 
demonstrated in this study is considered a practical means of drought 
assessment and monitoring, considering that the datasets used are 
free, relatively up-to-date, and have large spatial coverage.
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