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A vast array of scientific literature is concerned with simulation models. The aim of models is to 
predict the unknown situation as close to as real one. To do this, models are validated and examined 
for their performance under known condition. In this paper, commonly used model performance 
evaluation indices are overviewed and examined under different situations. Difference based, 
efficiency based (Nash and Sutcliffe coefficient, model efficiency of Loague and Green, Legates 
and McCabe’s index) and composite indices (such as index of agreement, d, and dr) were found 
ambiguous, inconsistent and not logical in many cases. A new index, Percent Mean Relative Absolute 
Error (PMRAE), is proposed which is found unambiguous, logical, straight-forward, and interpretable; 
thus can be used to evaluate model performance. The model evaluation performance ratings based 
on PMRAE are also suggested.
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Introduction

A range of simulation models and decision support systems have 
been developed and are being used for several decades in different 
fields. Simulation models have been successfully used to provide 
simulations of crop growth and development (Geerts et al. 2009, 
Stockle et al. 2003), hydrologic variables (Suleiman 2008), water and 
solute transport (Crescimanno and Garofalo 2005,Dust et al. 2000), 
solar radiation (Rivington et al. 2005), environmental impacts (Stockle 
et al. 1992) and many other areas. One important aspect in the model 
development process is the model evaluation. Model outputs are 
compared /examined with observed (or known) data gathered under 
respective conditions, both by quantitative and graphical methods. 
Various statistical and efficiency-based indices/indicators and 
test statistics have been suggested and used by diffident model 
developers and users to judge the model performance. Among these, 

recommendation by Nash and Sutcliffe (1970), Fox (1981), Willmott 
(1982, 1985), and Loague and Green (1991) are prominent.
Among statistical indices, some of them quantify the departure of 
the model output from observed or experimental measurements, 
while others focus on correlation between model predictions and 
measurements. In essence, Fox (1981) recommended that the 
following four types of difference measures should be calculated and 
reported: mean error, mean absolute error, variance of the distribution 
of difference, and root mean square error (or its square - the mean 
square error).These difference-based statistics quantify the departure 
of the model outputs from the measurements.
Indicators for specific fields are also suggested. Bellocchi et al. 
(2002) proposed a fuzzy expert system to calculate a composite 
indicator for performance evaluation of solar radiation. They used 



2

 

correlation coefficient (r), relative root mean square error (RRMS), 
model efficiency (EF), and t-Student probability to make aggregated 
form. Confalonieri et al. (2010) proposed a fuzzy-based, indicator 
for evaluation of soil water content simulation. Jacovides and 
Kontoyiannis (1995) proposed mean bias error (MBE) and root mean 
square error (RMSE) in combination with the t-statistic as statistical 
indicators for the evaluation and comparison of evapotranspiration 
computing models. 
Among the difference and/or statistical measures, mean error (ME), 
root mean square error (RMSE), relative error (RE), and correlation 
coefficient (r) are widely used in different fields –crop growth and 
yield (Geerts et al. 2009), irrigation scheduling (Liu et al. 1998), 
hydrological (Shen et al. 2009), environmental (Wagener and Kollat 
2007), solar radiation (Rivington et al. 2005), pollution simulation 
model (Yang et al. 2007), etc. Model efficiency (EF) is used in almost 
every field of simulation. The above indices are used for both single 
model evaluation and comparison of multiple models (Prasher et al. 
1996). Martorana and Bellocchi (1999) identified the mean squared 
error of prediction as the fundamental statistical index on which 
other widely used squared differences are based. While Willmott and 
Matsuura (2006) noted that RMSE is an inappropriate measure of 
average error because it is a function of three characteristics of a set 
of errors, rather than of one (average error). 
Yang et al. (2000) evaluated different statistical methods to evaluate 
crop-nitrogen simulation model, N_ABLE. They suggested that two 
sets statistics can be used: (a) mean of error (ME), root mean square 
error (RMSE), forecasting efficiency, and paired t-statistic;  (b) ME, 
mean absolute error, forecasting coefficient, and F-ratio of lack of fit 
over experimental error. They noted that either set can give the same 
conclusions which could not be quantitatively detected by graphical 
method. The use of test statistics (e.g. F, t-test, etc.) to judge the 
error variance between observed and simulated outputs have the 
possibility of producing type-I or type-II error. 
Willmott (1981) demonstrated that the correlation coefficient, r 
(Pearson’s product-moment correlation coefficient) can be misleading 
measure of accuracy – ‘r’ between very dissimilar model-predicted 
variable and observed one can easily approach 1.0. Willmott (1982) 
discussed other drawbacks of ‘r’ and ‘R2’, and proposed an “index 
of agreement (d)”. He noted that the index ‘d’ is intended to be a 
descriptive measure, and it is both a relative and bounded measure 
which can be widely applied for cross-comparisons between models. 
Willmott et al. (2011) suggested a refined index (dr) considering the 
problem of d.
Among the efficiency-based indices (EF) suggested for model 
performance evaluation, widely used ones are Nash and Sutcliffe 
coefficient (Nash and Sutcliffe 1970) and model efficiency of Loague 
and Green (1991). Many researchers (Addiscott and Whitmore 1987, 
Martorana and Bellocchi 1999, Rivington et al. 2005, Moriasi et al. 
2007) noted that a model may be judged suitable according to 
one statistic but it may be deficient according to another statistic. 
Alexandrov et al. (2011) emphasized the need of standardized 
evaluation tool. 
The purpose of this paper is to examine all of the above indices, and 
suggest a logical, stable, unambiguous and straight-forward index 
for model performance evaluation.

Definition of commonly used statistical measures and indices for 
model performance evaluation

Before going to analyze the indices, it would be useful to define 
them along with their perspectives. So, they are described below. 
For synchronization of all the indices, observed or measured value is 
designated by Oi, and predicted or simulated value is designated by 
Pi, although the original proposed symbol may be different in some 
cases. 

Difference based Statistical indicators

(i) Mean bias or Mean error (ME)(Fox 1981):

                                                                                                          (1)

Where, N is the number of observations.

(ii) Mean Absolute error (MAE) (Fox 1981): 

                                                                                                          (2)

(iii) Root mean square error (RMSE):

                                                                                                          (3)

The RMSE quantifies the dispersion between simulated and measured 
data. Ideally, the value of  ME, MAE, and RMSE  should be zero.  

iv) Relative error (RE) or relative root mean square error (RRMSE) 
(Loague and Green 1991, Bellocchi et al. 2002):

                                                                                                          (4)

Where, O is the mean of observed values. The RE may vary from 
0 to positive infinity. The smaller the RE is, the better the model 
performance.  Sometimes it is expressed as percentage form. 
 

v) Scaled Root-mean-Square-Error (SRMSE) (Dust et al. 2000):

                                                                                                          (5)

In essence, the RE and SRMSE are the same.
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Efficiency based indicators

(i) Nash and Sutcliffe Coefficient of efficiency (ENS) (Nash and 
Sutcliffe 1970):

                                                                                                          (6)

Nash-Sutcliffe coefficient of efficiency (ENS)  varies between - ∞ and 1.0, 
and ENS=1 is the optimum value. The ENS≤0.0 indicates unsatisfactory 
performance, and 0<ENS<1 is considered as the acceptable range. 

(ii) Model efficiency of Loague and Green (ELG) (Loague and Green 
1991):

                                                                                                          (7)

An ideal value of ELG  is unity. Its upper limit is 1, and lower value can 
negative infinity.

The Nash-Sutcliffe coefficient of efficiency (ENS) and the model 
efficiency of Loague and Green (ELG) are the same. So, only one will 
be discussed in the later section.

(iii) Legates and McCabe’s index (ELM) (Legates and McCabe 1999)
Legates and McCabe’s index (ELM) is written as:

                                                                                                         (8)

Other composite indicators

(i) Index of Agreement (d) (Willmott 1982):

                            , 0 ≤ d ≤1                 (9)     

where O’i = |Oi - P| ,  P’i = |Pi - P| , Oi is the observed value, Pi is the 
simulated value and P is the simulated mean. 

(ii) Refined index of Willmott et al. (2011)

The refined index of Willmott et al. (2011) (dr) can be written as:

                                                         , when   m1≤ c*m2                  (10)

                                                           when m1> c*m2

Where,

                                                              and c = 2

Proposed new index

Percent mean absolute relative error (PMARE)

It is the ‘mean absolute relative error’, expressed in percentage.

                                                                                                         (11)

Where, ‘Abs’ indicates absolute value (of the difference between 
observed and simulated value). Theoretically, the value of PMARE 
ranges from 0%  to ∞ (positive infinity).  The interpretation and 
characterization of the index are discussed later. 

Data for comparison of indices

To test the statistics and indices, both the field observed data and 
simulated random data were used.

Simulation comparison with field observed data
Field data are originated from wheat experiment, where diverse 
irrigation treatments were applied representing different strategies 
of deficit irrigation. Simulation was performed using AquaCrop 
model of FAO (Steduto et al. 2009). Before simulation, calibration of 
the model was performed using one year data. The model AquaCrop 
produces inferior simulations at extreme dry condition (herein 
referred as ‘odd simulation’– sometimes referred in the literature as 
‘outliers’), which is a common problem in many models. Observed 
and simulated outputs are summarized in Table 1, which are used to 
explore the behavior of the indices. 

Table 1. Observed and simulated yield of wheat grain & total biomass
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Data 
year

Treatment/
Sl.no.

Grain  yield (t/ha) Total biomass yield (t/
ha)

Observed Simulated Observed Simulated

1st

1 2.071 1.293 7.06 6.614
2 3.978 3.956 11.649 11.384
3 3.721 3.956 10.351 11.383
4 3.872 3.779 10.643 10.962
5 3.859 3.734 11.197 10.887
6 3.846 3.586 10.946 10.649
7 3.739 3.191 10.276 9.741
8 3.618 3.734 10.227 10.886
9 4.017 4.015 11.85 11.473
10 3.281 1.707 9.588 7.384
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Table 1. Observed and simulated yield of wheat grain & total biomass 
(continuation)

Simulation comparison with Random data 
To show the behavior of the indices under different patterns of data 
series, values of O and P were created (generated) using a random 
data generator. More specifically, 3 sets of random data of size n=20 
were generated separately for O and P using a random number 
generator (RANDOM.ORG, 2012) [Table 2, Fig.1]. The randomness 
comes from atmospheric noise.

Calculation of the indices
The indices were calculated using Microsoft spreadsheet following 
the equations mentioned earlier. 

Grain yield of wheat

The statistical parameters and indices under different conditions 
(“with” and “without” odd simulated values) are presented in Table 3.  
The data points (with odd values) are graphically illustrated in Fig.2 
along with 1:1 line. 
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Data 
year

Treatment/
Sl.no.

Grain  yield (t/ha) Total biomass yield (t/
ha)

Observed Simulated Observed Simulated

2nd

1 1.574 0 4.246 0
2 3.404 3.802 10.50 11.151
3 3.144 3.798 11.223 11.142
4 3.169 3.688 10.366 10.854
5 3.168 3.613 10.145 10.694
6 3.395 3.271 10.265 10.05
7 3.141 2.901 8.991 9.281
8 2.994 2.567 9.24 9.004
9 3.48 3.802 11.61 11.151
10 2.779 1.519 9.045 7.167

Figure 1. Pattern of observed versus simulated random data sets

Sl 
no.

Set-1 Set-2 Set-3

Observed Simulated Observed Simulated Observed Simulated

1 33 46 11 24 17 14
2 50 23 12 11 41 19
3 36 35 44 43 7 35
4 33 45 36 8 41 4
5 25 21 20 20 27 18
6 7 22 17 16 36 24
7 2 23 33 50 29 26
8 42 43 30 8 36 7
9 17 18 38 26 21 5
10 18 42 17 42 10 32
11 45 12 21 16 42 38
12 23 39 8 12 39 27
13 21 7 40 46 28 32
14 42 44 20 15 30 6
15 47 13 18 12 43 47
16 7 7 32 24 46 41
17 11 34 16 1 10 33
18 20 15 18 5 42 13
19 29 23 32 31 5 46
20 12 22 21 10 46 17

Table 2. Data sets (Random numbers) generated  using ‘Radom Number 
Generator’

 Results and Discussions
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For the simulation year-1, while the ‘odd simulated’ values are omitted 
from the calculation, the difference-based statistical indicators – 
mean error (ME), mean absolute error (MAE), root mean square error 
(RMSE), and relative error (RE) decreased compared to those with ‘odd 
simulated values’; which is logical. The efficiency based indicators –
ENS or ELG, ELM, index of agreement d, and new index of agreement dr 
decreased; but they should be increased. Similar behaviors are also 
observed for the year-2. 
For the combined data, the statistical indicators followed the logical 
behavior. Here, the ENS and ELM followed the logical trend – higher 
values for ‘without odd data’ (i.e. with good simulated data). But the 
d followed the reverse behavior – decreased with good simulated 
values. The PMARE always followed the logical behavior, and no 
ambiguous result.
From the different data sets, it is revealed that the difference-based 
statistical indicators gave consistent and logical measures. The 
behavior of ENS and ELM is inconsistent, and reverse in two cases. The 
behavior of d is reverse in all the studied cases. Similar behavior is 
also noticed by ‘r’. 
The behavior of ENS and ELM may be due to their inherent formulation/
structure. From the equation of ENS and ELM, it is revealed that they are 
more dependent on observation range (Oi and O) than the difference 
between the observed and predicted values. Thus, the ENS and ELM 
are more sensitive to observed range/fluctuation. Hence the output 
is not consistent and reliable. Similar behavior is also noticed by d. In 
the studies cases, the outputs are consistently reverse to the logical 
direction. For dr, the behavior is inconsistent for 2 cases – 1st& 2nd 

year data.

Case of total biomass yield

The observed and simulated total biomasses are illustrated in Fig. 3 
along with 1:1 line. The statistical parameters and efficiency indices 
are presented in Table 4. The r value shows reverse behavior (opposite Figure 2. Pattern of observed versus simulated grain yield of wheat

Statistical indicator

1st year 2nd year Combined data

With odd 
simulations

Without odd 
simulations (excluding 

no. 1 & 10)

With odd 
simulation 

Without odd 
simulation (excluding 

no. 1 & 10)

With odd 
simulations

Without odd 
simulations 

Mean Bias (t/ha) -0.305 -0.087 -0.129 0.193 -0.217 0.053

Mean absolute bias 
(MAE) (t/ha) 0.375 0.175 0.596 0.391 0.486 0.283

RMSE (t/ha) 0.595 0.240 0.740 0.420 0.672 0.342

RE (%) 16.54 6.268 24.47 12.98 20.28 9.68

Pearson’s moment 
correlation coefficient (r) 0.887 0.440 0.930 0.581 0.867 0.572

ENS or ELG (%) -18.44 -269.59 -101.14 -612.66 -22.40 -7.93

ELM -0.0152 -0.685 -0.726 -1.753 -0.081 0.0473

Index of agreement (d) 0.951 0.534 0.809 0.611 0.838 0.774

New index of agreement, 
dr

0.492 0.158 0.14 -0.273 0.459 0.524

PMARE (%) 12.27 4.65 24.3 12.22 18.3 8.43

Table 3. Statistical and efficiency indicators for evaluating simulation performance of wheat grain yield under different conditions
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to logical, MAE & PMARE) for 2nd year & combined data - higher 
value for “with odd simulation’.

Figure 3. Pattern of observed versus simulated biomass in different years

Behavior with Random data

The values of statistical and efficiency based indices for 3 random 
data sets, with ‘all data’ (herein referred as ‘with odd simulation’) and 
‘without extreme values’ (2 extremes) (herein referred as ‘without odd 
simulation’) are summarized in Table 5. Here, the ENS and dr do not 
follow the logical behavior of difference-based measures MAE and 
RMSE (and also PMARE) for the 1st & 3rd data sets. The ELM shows 
reverse trend for 3rd data set. The results indicate that the r, ENS, 
ELM, and dr show ambiguous performance rating under different 
conditions.

Now-a-days, the modeling and the use of models are becoming the 
major thrust in all branches of science. It is increasingly important 
that discussion of model evaluation procedure to be expanded in 
order that logical, consistent and generally accepted indicator(s) is 
identified. The indicators should appropriately quantify objective 
of model evaluation – that is, should direct towards the answer of 
model usability. It is logical demand that an ‘ideal indicator’ for model 
performance evaluation should:

(i)   Have straight-forward physical meaning and interpretation
(ii) Indicate the strength (accuracy) or pit-fall (weakness) of the 

prediction capability, so that decision can be made regarding 
usefulness of the model

(iii) Have consistent value/trend with the logical direction, and no 
ambiguous performance rating

Graphical method gives the overall and real picture, while the different 
indices give quantitative measures. The diagnosis that can be made 
from the graph, must be supported by the quantitative measures. 
The indices should also be consistent in their results. Otherwise, the 
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Discussion

Statistical indicator

1st year data 2nd year data Combined data

With odd 
simulations

Without odd 
simulations (excluding 

no. 1 & 10)

With odd 
simulation 

Without odd 
simulation (excluding 

no. 1 & 10)

With odd 
simulations

Without odd 
simulations 

Mean Bias (t/ha) -0.242 -0.024 -0.514 0.123 -0.378 0.045

Mean absolute bias, 
(MAE) (t/ha) 0.644 0.471 0.909 0.371 0.777 0.424

RMSE (t/ha) 0.857 0.525 1.514 0.413 1.230 0.476

RE (%) 8.26 5.02 15.83 4.02 12.34 4.58

Pearson’s moment 
correlation coefficient (r) 0.87 0.93 0.972 0.885 0.943 0.917

ENS or ELG (%) 55.55 84.30 40.11 75.04 47.92 82.03

ELM 0.266 0.464 0.324 0.413 0.333 0.449

Index of agreement, d 0.910 0.963 0.915 0.934 0.918 0.956

New index of agreement, 
dr

0.633 0.732 0.662 0.707 0.667 0.724

PMARE (%) 6.49 4.65 14.96 3.61 10.72 4.16

Table 4. Statistical and efficiency based indicators for evaluating simulation performance of total biomass yield under different conditions
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particular quantitative index is not suitable for model comparison, 
and should be abundant from model performance measure. 
Legates and McCabe (1999) suggested that correlation and correlation-
based measures (e.g. the coefficient of determination, R2) should not 
be used to assess the goodness-of-fit of hydrologic or hydro-climatic 
model, as these measures were found over-sensitive to extreme 
values (outliers) and are insensitive to additive and proportional 
differences between model predictions and observation. Willmott 
(1981) found ambiguous behavior of correlation coefficient,‘r’. The 
present study also showed ambiguous behavior of ‘r’. 
Within the domain of efficiency based indicators, McCuen et al. (2006) 
showed that the outliers can significantly influence sample values of 
the Nash–Sutcliffe efficiency index (ENS). In the present study, ENS and 
ELG also showed ambiguous result due to the presence or absence of 
externalities (extreme values). 
Willmott et al. (2011) proposed a new index, dr, and they compared 
the dr with ‘mean absolute error (MAE)’ of the data sets, which varies 
logically with MAE. But this should be compared with mean absolute 
relative error, because MAE can vary with different data pattern/set, 
while the ‘mean absolute relative error’ value may be the same (i.e. 
no change in relative pattern). In the present study, the dr index does 
not follow the logical trend within a particular data set, as in Table 2 
(combined analysis); and also ambiguous among different sets (1st 
year and combined data) – with PMARE value. Similar inconsistencies 
are also observed for random data sets (Table 4, 1st & 3rd data sets – 
with PMARE).
As the behavior of EF, d, dr and r are not consistent and logical for all 
cases (ambiguous, conflicting performance rating); they should be 
avoided from model performance measure.
The ‘mean absolute error’ (MAE)and ‘mean bias error’ (ME) have been 
suggested by Willmott and Matsuura (2006). But the MAE or ME does 
not tell about the level or degree of error, and the MBE can ‘neutralize 
the amount of error’ if the error occurs on both positive and negative 
directions. The ‘mean absolute relative error’, when expressed as 
percentage, that is ‘percent mean absolute relative error’ (PMARE) 

(eqn.11), overcomes the above deficiencies. It has merit over ‘mean 
absolute error’ that it directly indicates the strength or weakness of 
the simulation; and thus helps to decide accept or reject the model. 
Theoretically, the value of PMARE can range from 0% to ∞ (positive 
infinity). As it is a measure of error (but relative – with respect to 
observed, which is logical than any other measure), the optimum 
value is 0.0, indicating no error (that is perfect simulation). Low 
magnitudes indicate less error (i.e. better model simulation) and the 
higher values indicate higher error (i.e. less perfect simulation). The 
0<PMARE<100 can be considered as the practical/acceptable range. 
Performance rating based on any indicator may depend on the 
model type, field of application (i.e. sensitivity of the work/project 
where the model output will be used), availability of real-world data, 
etc.  In general, for the PMARE value, the following ratings may be 
used as a guide (Table 6):

Table 6. Suggested performance rating for model evaluation based on new 
index, PMARE

The above threshold/maximum limit for rating a model is determined/
suggested  after examining various data sets, by sequentially omitting 
the data having higher difference (in percent) between observed and 
simulated values, and determining PMARE. 
Based on the required precision, the user can choose lower PMARE 
value. On the other hand, where no other means/data are available, 
the user can use a model having even a higher PMARE value (say, 
25%) to get a forecast.

Statistical indicator

1st data set 2nd data set 3rd data set

All data 
(With odd 

simulations) 

Without odd 
simulation (excluding 

2 extremes)
All data 

Without odd 
simulation (excluding 

2 extremes)
All data Without odd 

simulations

Mean Bias (ME) 0.70 -1.67 -3.20 -5.66 -5.60 -10.05

Mean absolute bias 0.644 0.471 0.909 0.371 0.777 0.424

(MAE) 13.1 12.11 9.70 8.66 17.80 15.94

RMSE 16.87 16.20 12.68 11.60 21.38 19.26

RE (%) 64.90 57.52 52.40 45.78 71.76 59.38

Pearson’s moment 
correlation coefficient (r) 0.408 0.45 0.271 0.50 -0.546 -0.358

ENS or ELG (%) -41.22 -50.14 -53.64 -31.34 -155.39 -187.91

ELM -0.07 -0.05 -0.06 0.05 -0.56 -0.638

New index of agreement, 
dr 0.467 0.446 0.469 0.526 0.221 0.181

PMARE (%) 108.96 51.12 45.48 35.79 117.61 62.89

Table 5. Statistical and efficiency based indicators for evaluating simulation performance based on random data

PMARE value (%) Model rating 

0 - 5 Excellent 
5-10 Very good

10 - 15 Good 
15 - 20 Fair 
20 - 25 Moderate 

>25 Unsatisfactory 
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The PMARE  has distinct advantages over the other indicators:
(i)   It is simple to calculate 
(ii)  Has direct physical meaning 
(iii) Indicates directly the accuracy or pit-fall of the simulation, and 

thus helps to decide about the acceptability (or usefulness) of 
the model

(iv)  No ambiguous result
(v)   Follow the logical direction
(vi) Relative measure, thus applicable to any field of observation, 

regardless of units (scales of measurements) and range of values 

Previous studies have produced comparable information for 
model evaluation indices (for selected models or in general). But 
no comprehensive standardization (or concrete suggestion) is 
available including recently developed indices. The purpose of this 
investigation is to review and evaluate available indices for model 
performance evaluation and explore a logical, interpretable, and 
unambiguous index for general use in model evaluation. The r, R2, 
and RMSE have been regarded as non-logical, ambiguous and mis-
interpretable from previous studies (and have been suggested to 
abundant from the array of performance testing indicators) and also 
from this study.
The present investigation demonstrates that the index of agreement 
(d) between very dissimilar model-predicted variable and observed 
data can approach to one (1.0), but can have lower value for nearly 
similar data sets. The ambiguous and inconsistent behavior of dr are 
also observed, thus cannot be regarded as a reliable indicator. The 
investigation also demonstrates that the efficiency based indicators 
such as ENS and ELG, are not consistent with logical trend (and 
shows reverse trend in some cases), and also with widely accepted 
difference-based measures (e.g. MAE, RMSE).
The PMARE (which is based on similar principle of MAE, but relative 
to observed data) shows consistent, robust, descriptive (clear 
interpretative), and logical behavior, and thus can be used as an 
ideal indicator for model evaluation under diverse output conditions. 
The performance rating based on PMARE is also suggested. From 
investigation of various data sets (diverse in nature), it can be 
concluded that the index is measuring error with both accuracy and 
precision.
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