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Multilayer Artificial Neural Networks (ANNs) with the backpropagation algorithm were used to 
estimate the decrease in relative saturated conductivity due to an increase in sodicity and salinity. 
Data from the literature on the relative saturated hydraulic conductivity measured using water 
having levels of sodicity and salinity in different types of semiarid soils were used. The clay content 
of these soils is predominantly montmorillonite. The input data consisted of clay percentage, cation 
exchange capacity, electrolyte concentration, and estimated soil exchangeable sodium percentage 
at equilibrium stage with the solution applied. The data was divided into three groups randomly 
to meet the three phases required for developing the ANNs model (i. e. training, evaluation, and 
testing).The activation function selected was the TANSIG layer in the middle, while the exit function 
was the PURELIN layer. The comparisons between the experimental and predicted data on relative 
saturated hydraulic conductivity during training and testing phases showed good agreement. This 
was evident from the statistical indicators used for the evaluation process. For the training phase, the 
values of mean absolute error (MAE), root mean square error (RMSE), the correlation coefficient (r) 
and the determination coefficient (R2) were 0.08, 0.13, 0.91, and 0.83, respectively. The performance 
of the ANNs model was evaluated against a part of the data selected randomly form the whole set 
of data collected (i. e. data not used during the model testing phase). The resultant values for MAE 
and RMSE, r and R2 were 0.12, 0.16, 0.82 and 0.68, respectively. It should be noted that many factors 
were not considered, such as soil pH, type of clay, and organic matter, due to the limitations of the 
data available. Using these factors as input in ANNs might improve model predictions. However, the 
results suggested that the ANNs model performs well in soils with very low levels of organic matter.
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The shortage of fresh water for irrigation has led to overuse of water 
with high levels of salinity and sodicity. Salinity is the increase of 
concentration of soluble salts in the water solution, while sodicity is 
the relative concentration of sodium (Na+) compared with divalent 
cations, mainly calcium (Ca2+) and magnesium (Mg2+) in water or soil 
solution (Ezlit et al. 2010). Using water with high levels of salinity 
and sodicity may initiate soil structure stability problems in irrigated 
areas. The increase of salinity in the root zone limits the growth and 
development of crops and reduces yield. Rising sodicity induces 
structural instability in soils containing a significant clay percentage. 
Degradation of soil structure results in negative changes in soil 
hydraulic properties, reduces aeration and soil logging, and adversely 
affects nutrient balance in the root zone. Sodicity is also common 
in soils irrigated with water containing considerable bicarbonate 
concentrations. This is because bicarbonate anions raise soil pH and 
can result in precipitation of divalent cations and an increase in the 
relative sodium concentration (Ezlit et al. 2011).
Sodicity is usually evaluated in terms of the sodium adsorption ratio 
(SAR) in irrigation water. The exchangeable sodium percentage (ESP) 
was employed to determine the level of sodicity in soils. ESP is closely 
related to SAR and in the literature it is used interchangeably to express 
the level of sodicity. In addition, the magnitudes of deflocculation are 
expressed in terms of decreases in saturated hydraulic conductivity 
(Ksat), and occasionally in the change in infiltration rates (Simunek and 
Suarez 1997). Coupling the percentage of the hydraulic conductivity 
reduction to the real measured values of ESP of the soil or SAR of 
the applied water allows quantification of the sodicity effect. This 
approach has been intensively applied since first introduced by Quirk 
and Schofield (1955). They measured the decrease in Ksat as a result 
of water sodicity and salinity using soil columns equilibrated with 
Mixed-Salt solutions at given SAR values and different electrolyte 
concentrations.
Quirk and Schofield (1955) introduced two indicators to evaluate 
the degree of adverse sodicity effect in relation to the total salinity 
concentration and the SAR of the water applied. These indicators 
are the threshold electrolyte concentration (TEC) and turbidity 
concentration (TC). TEC was defined as the salt concentration at which 
the soil permeability starts decreasing to a certain sodicity level. The 
value of TEC is very important in setting an irrigation management 
program using highly saline sodic water. TC was defined as the salt 
concentration at which clay fractions appear in the percolate. TC 
indicates that the soil structure is highly affected and should not 
be reached in practice. It should be noted that some level of Ksat 
reduction occurs due to pore clogging as a natural process of water 
movement conveying fine particles. Fine particles may plug some of 
the fine effective pores. In addition, soil slaking occurs the first time 
water is added. For a given soil, Quirk and Schofield (1955) proposed 
a critical decrease in Ksat of 10 to 15% of the optimal Ksat value. 
However, McNeal et al. (1966) recommended using a 25% reduction 
as critical of TEC for some American soils tested using backed 
columns. In addition, Cook et al. (2006) adopted a 20% reduction in 
Ksat as a critical value to determine TEC; this was later adopted by 
Ezlit (2009). Ezlit (2009) used an improved experimental design based 
on the Quirk and Schofield (1955) method to produce the TEC for 
a number of Australian soils (i.e. semiarid soils). The results showed 

that the TEC varies from one soil to another. Bennett and Raine (2012) 
used the same technique to demonstrate the need for producing a 
TEC curve for a single soil to better manage irrigation using highly 
saline sodic water.
Various researchers have developed general soil stability guidelines 
based on the TEC concept for different soils in relation to the total 
salinity concentration and SAR of the water applied (e.g. Quirk and 
Schofield 1955, Rengasamy et al. 1984, and Ayers and Westcot 1985). 
These guidelines are useful for general demonstration of the effect 
of sodicity. However, these guidelines were derived for specific soils, 
and may not be suitable for other soil types (Ezlit 2009). The variation 
in the TEC for different soils is significant due to many interrelated 
and dynamic factors (Rengasamy et al. 1984). The variation in TEC 
is mainly caused by the differences in the clay mineral types and 
content, as well as soil texture (McNeal and Coleman 1966, Frenkel 
et al. 1978). Setting good irrigation management using saline sodic 
water requires identification of the level of soil structural stability 
under applications of saline sodic water.
Modeling soil structure instability due to sodicity was first introduced 
by McNeal (1968). The McNeal (1968) method is based on a semi-
empirical model that relates the montmorillonite swelling approach 
from Norrish (1954) (i.e. swelling factor) to the change in relative 
reduction in saturated hydraulic conductivity as relative RKsat. In 
addition, Lagerwerff et al. (1969) proposed a different semi-empirical 
model that relates RKsat calculated using the Kozeny-Carmen equation 
(Carman 1937, 1948) to clay swelling calculated based on the diffuse 
double layer theory. Furthermore, Yaron and Thomas (1968) provided 
a simple empirical equation to predict RKsat from the average ESP of 
the soil. Jayawardane (1979) proposed the equivalent salt solutions 
method to predict RKsat due to rising sodicity. Jayawardane (1979) 
defined the equivalent salt solutions as solutions with combinations 
of sodium adsorption ratio (SAR) and solute concentration (Co) that 
produce the same extent of clay swelling in a given soil. In addition, 
Ezlit (2009) and Ezlit et al. (2013) provided a modification of the 
McNeal model with guidelines to predict the model parameters.
Research on these models showed more or less appropriateness (e.g. 
Russo and Bresler 1977, and Mustafa and Hamid 1977). Nevertheless, 
in all aforementioned models, obtaining the model parameters for a 
specific soil is required. The process of parameter determination is 
complicated, time consuming, and tedious experiments are needed.

The situation of the unsaturated conditions is more complex. 
Different models have also been proposed to quantify the decrease 
in unsaturated hydraulic conductivity to be applied under field 
conditions. Examples of those approaches are Simunek et al. (1996) 
and Russo and Bresler (1977). Simunek et al. (1996) used a reduction 
function based on the McNeal (1968) model and a soil pH effect 
function. The Simunek (1996) approach assumes that the effect 
of sodicity in soils under saturated conditions is similar to that in 
unsaturated conditions.
Despite considerable studies, there is no generic approach to 
predicting the TEC for different soils based on readily available soil 
data. However, this model can be developed by utilizing the new 
techniques in computer technology. The best available technique is 
artificial neural networks (ANNs).

1.   Introduction
Journal of Natural Resources and Development 2014; 04: 27 - 33DOI number: 10.5027/jnrd.v4i0.05



ANNs are able to accurately approximate complicated non-linear 
input/output relationships. The ANNs methodology has been used 
in applications where the characteristics of the processes are difficult 
to describe using simple physical equations. There are a number of 
studies (e.g. Elizondo et al. 1994, Schultz and Wieland 1997, Ekhmaj 
et al. 2007) in which some environmental phenomena are described 
by mathematical models based on an ANNs approach. For solute 
transport problems, ANNs applications have been used successfully 
to predict the transport parameters and solute distribution in 
groundwater (Morshed and Kaluarachchi 1998, Almasri and 
Kaluarachchi 2005). Nevertheless, no study has been conducted 
to use the input– output mapping of ANNs to predict the effect 
of sodicity seen in the decrease in saturated hydraulic conductivity 
associated with applications of saline-sodic water. The current study 
aims to develop an ANNs model to simulate the decrease in saturated 
hydraulic conductivity associated with applications of saline-sodic 
water using RKsat data obtained from laboratory experiments.

2.1   Data collection

TEC experiments for 10 semi-arid soil groups from different sources 
were used in this study. The soils selected have very low organic 
matter levels and represent semi-arid soils from the US and Australia. 
Table 1 provides a summary of the main soil input data used to 
develop the ANNs model. In all data sourced, the experimental 
design used is similar to that adopted by Quirk and Schofield 
(1955), where different NaCl-CaCl2 solutions having different SAR 
and solute concentrations (C0) were applied to soil columns. The 
RKsat values were calculated by dividing the measured Ksat using a 
NaCl-CaCl2 solution by the Ksat measured for normal water (low 
SAR and higher C0).  The measured RKsat in solution having a value 
of SAR and C0 for a given soil were treated as an individual case.

Individual cases of RKsat data (the values ranged from 0.1 to 1) 
corresponding to Electrolyte concentration (C0) (ranged from 2.5 to 
640 mmolc/Litre), exchangeable sodium percentage (ESP) (ranged 

from zero to 100%), cation exchange capacity (CEC) (between 
94.45 and 433.2 mmolc/Kgsoil), clay content (%) (from 5.7 to 53.4) 
were organized in Excel spreadsheets as cases. The data collected 
represents the quality of the water applied and the soil properties.

The ESP values were estimated from the measured sodium adsorption 
ratio (SAR) for applied water using the USSL Staff (1954) SAR-ESP 
relationship. Both solute concentration (C0) and ESP as a function of 
SAR determine the degree of the sodicity effect on the soil’s stability 
due to the water applied. The CEC is one of the main soil properties. 
CEC is a relative function of the type of clay and organic matter. Since 
the data selected represents soils having less than 1% organic matter, 
most of the CEC values come from clay content. Thus, CEC is expected 
to improve the predictions generated by the model. Clay content 
reflects the percentage of soil that can affect the conductivity if entirely 
dispersed. However, not all clay types can result in soil deflocculation, 
the effect of clay can be better refined by using the percentage of 
dispersed clay such as montmorillonite. However, not all the data 
available in the literature has such values, though the data selected 
for this study is generally from soils predominant in montmorillonite 
clay which makes total clay percentage a useful variable for the model.

2.2   Standardization of the data:

The data collected were processed to meet the requirement 
of the ANN model. Data were arranged as numbered cases 
(i = 1, 2,…, n), and transformed according to the following 
expression as suggested by Vamsidhar et al. (2010):

 (1)

Where: minA and maxA are the minimum and maximum values of an 
attribute such as C0, ESP, clay %, CEC and RKsat. Min-max normalization 
maps a value, v, of the A attribute to v’ in the range [new minA; new maxA]. 
In this study, all data values fall between 0 and 1, which is required by the 
model’s algorithm. New minA was set at 0.0 and new maxA equal to 1.0.

2.   Material and Methods
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Soil No.
Soil name Clay CEC Number of cases

Source
(As reported) % (mmolc/kg) (RKsat, ESP, C0,  clay %, CEC)

1 Alluvial 36.9 433.2 30
Jayawardane (1977)

2 Red Brown 40.6 245.7 12
3 Imperial soils group a 5.7 94.6 20

McNeal (1968), Mc-
Neal et al. (1968)4 Imperial soils group b 16.2 153.8 20

5 Imperial soils group c 48.5 336 20
6 Gray Vertisols 53.4 258.4 25

Ezlit (2009)7 Sodosols 12.9 99 24
8 Brown Vertisols 47.1 270 24
9 Soil 9 37 252.2 33

Leigh (2010)
10 Soil 8 38 275.4 30

Table 1: Main properties of the soils  used to develop the ANNs Model
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The data were divided into three groups. Group A were used for 
the model training and comprises 50% of the data collected (119 
cases). Group B was employed for the internal process of the ANNs 
model. Group C was used for the internal model validations and 
comprises 25% of the data collected (59 cases). The testing phase 
used the third group which comprises 25% of the data set (60).

2.3   ANNs Model

Matlab program (Version 7.0) of Neural Networks Toolbox (Graphical 
User Interface) was used to develop the ANN model for this study. The 
activation function selected was the “TANSIG” layer in the middle, while 
the exit function was the  layer. The model used is demonstrated in figure 1.

Figure 1. The architecture of (4 – 4 – 1) backpropagation neural 
networks used in this study

2.3   Performance Evaluation Criteria

In order to evaluate the developed neural network model, a 
number of statistical parameters were used. These indicators 
are the correlation coefficient between experimental and 
estimated RKsat (r), determination coefficient (R2), mean 
absolute error (MAE) and root mean square error (RMSE).

                (2)

           (3)

      (4)

Where Oi and Pi are the estimated and experimental values of 
RKsat, So is the sample standard deviation of the observed data, 
Sp is the sample standard deviation of the predicted data and n 
is number of pairs of observations. All data were processed and 
loaded into the neural modeling application Matlab program 
(Version 7.0) Neural Networks Toolbox (Graphical User Interface).

3.1 Development of the ANN model

Despite the many models proposed to quantify the decrease 
of saturated hydraulic conductivity, none can be used without 
determining the model parameters for a given soil. The perfect 
relationship with limited factors is not available in the literature. 
That is because of the complexity of the sodicity effect within the 
soil. Therefore, there are no standard rules to building the networks 
structure; the optimum networks was identified using a trial and 
error process. The best results were obtained using a multilayer 
networks including the backpropagation algorithm. The input 
layer consists of 4 neurons for CEC, C0, ESP, and clay content. The 
output layer has only one neuron to provide the predicted RKsat. 
The hidden layer was started with a small number of neurons and 
increased progressively until the optimum structure was reached. Too 
few neurons could lead to underfitting and difficulties in mapping 
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Figure 2. Plots of experimental (solid line with filled circles) versus estimated values 
(dashed with unfilled circles) of RKsat for the training phase.



the process, while having too many neurons leads to overfitting 
and increased training time. The optimum model structure was 
accomplished through trial and error to determine the number of 
hidden layers and the number of neurons in each layer. It was found 
that the optimum networks structure to simulate the decrease in RKsat 
for the networks of four neurons in the input layer needs one hidden 
layer with 4 neurons to provide one neuron in the output layer. 
Therefore, the optimum structure was 4-4-1 as illustrated in Figure 1.

Figure 3. The correlation between the predicted and the 
experimental RKsat during the training phase.

The ANNs model predictions compared with the real data selected 
during the training phase are illustrated in Figure 2. It can be noted 
that the predicted values of RKsat are in good agreement with the 
experimental values. The good performance of the model is evident 
from the values of MEA and RMSE which are 0.08 and 0.13, respectively. 
The correlation between the predicted and the experimental RKsat 
data during the training phase is shown in Figure 3. The correlation 
coefficient obtained was 0.91, and the R2 is about 0.83. From 119 
values of RKsat plotted, few points fall away from the regression line. 
This shows that the model was able to estimate RKsat values in most 

cases during the training phase. However, there are some points 
where the model tends to overestimate RKsat compared with the 
experimental data. This may be due to the random errors which are 
inherent to the experiments. However, the statistic indices confirm 
that the model of RKsat was appropriate during the training phase.

The plots of experimental versus estimated values of RKsat for the data 
selected in the testing phase are illustrated in Figure 4. Generally, the 
performance of the ANN model was good. The model was able to 
describe the change in RKsat, as is evident from the values of RMSE and 
MAE in the testing phase, 0.16 and 0.12, respectively. The performance 
of the model may also be considered acceptable based on the value 
of the correlation coefficient, which is 0.82. The value of R2 was 0.68. 
For the testing phase, statistical indices indicate that the model was to 
some extent able to predict the decrease due to sodicity. In addition, 
the parameters chosen to describe soil characteristics were significant 
in the model (Figure 5). However, the model tends to overestimate 
RKsat compared with the experimental data. That is probably due 
to differences associated with random errors which are inherent 
to the experiments. The data sourced from the literature obtained 
under different conditions and standards regarding soil columns 
and solute preparations, which may lead to errors. The amount and 
the timing of water application were also different for the different 
experiments, which may result in uncertainty regarding the final RKsat. 
Such variations are expected in view of the absence of a standard 
methodology to obtain the TEC curves for a given soil. The variation 
can also be attributed to the differences in the ratio of dominant 
clay type (i.e. montmorillonite) in the clay percentage. For example, 
montmorillonite clay has less thickness and dispersion occurs due to 
the nature of clay swelling. A slight difference in the montmorillonite 
ratio could affect RKsat, however, other clay types may be less sensitive 
to the increase in sodicity levels in ambient solutions, and may also 
have no role in the dispersion process. The change in soil pH is 
one of the factors that may cause variation and induce unexpected 
results as it may alter CEC and significantly change ESP. However, 
the magnitude of this change is complicated and may differ with 
the chemical complex and the orientation of the clay particles. Thus, 
there is a need to set a standard method to estimate RKsat for different 
soils, which may improve the predictions generated by the model.
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Figure 4. Plots of experimental (solid line with filled circles) versus estimated values 
(dashed with unfilled circles) of RKsat for the testing phase.



 

Figure 5. The correlation between the predicted and experimental 
RKsat during the testing phase

Despite the complexity of soil sodicity mechanisms, which hinders 
the task of generating a generic model to describe the change in 
conductivity, the ANNs model developed herein describes the 
decrease in saturated hydraulic conductivity with appropriate 
accuracy. The performance of ANNs can be attributed to their 
structural and functional characteristics, such as nonlinear model 
capability. For the purpose of soil management under irrigation 
using sodic and saline water, the ANNs model developed here 
provided enhanced information on the soil’s structural instability 
compared with traditional indictors. However, many factors were not 
considered in this study, such as soil pH, type of clay and organic 
matter. This is because of the limitation in the available data. 
Therefore, there is a need to further examine this model taking other 
factors into consideration. However, the results suggest that the 
ANN model performs well in soils with low percentage of organic 
matter (< %1). In addition, the model can be coupled with chemical, 
water and solute movement to enhance the modeling process. 
It is recommended that the research continue in this area toward 
enhancement and improvement the ANNs model for improved results.
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