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Abstract

Students who complete kindergarten with an inadequate knowledge of basic mathematics 
concepts and skills will continue to experience difficulties with mathematics throughout their 
elementary and secondary years and may be at increased risk for math disabilities. There 
is a critical need to identify students experiencing difficulties in mathematics in the early 
elementary grades and to provide immediate and targeted instruction to remediate these deficits. 
Most early math screening tools focus on only a single skill, resulting in an incomplete picture 
of student performance and limited predictive validity. To address this need, we are developing 
a multiple-gating system of math assessment, the Primary Math Assessment (PMA), that 
both screens and provides diagnostic information in six domains. In this study, we present 
the results of the development and validation of items across the domains that will comprise 
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the PMA. Multidimensional Rasch models were used to estimate theoretically plausible 
dimensionality structures. Parsimony fit indices supported the six-dimensional model as the 
most generalizability model for the PMA data and supports reporting of six separate scores.

A recent review of early math screeners reported that virtually all screeners for the 
primary grades rely on assessing aspects of number sense (Gersten et al., 2012). These 
screening tools are used to identify students in need of more intensive math intervention as 
well as to identify students at risk for math disability. Two important issues present potential 
constraints on the efficacy of number sense screeners to adequately serve these purposes. 

First, adoption of the Common Core State Standards (CCSS) in Mathematics has led to an 
expanded math curriculum that includes a much broader set of math content and process standards, 
especially in the primary grades (National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010). The Common Core is a set of high-quality academic 
standards outlining what a student should know and be able to do at the end of each grade. In math, 
the standards draw on the most effective international models for mathematical practice and include 
not only number and operations, but also algebraic thinking, measurement and data analysis, and 
geometry standards. Many primary-grade teachers do not have the mathematics knowledge to 
accurately identify students’ needs across these more complex math skills (Hill, Rowan, & Ball, 
2005) and, therefore, rely on established screening instruments to inform their decisions. Because 
the validity of instructional decisions depends to an extent on the alignment between the screening 
measures and the content standards on which classroom instruction is based (Irvin, Park, Alonzo, 
& Tindal, 2012), screening instruments that only assess number sense will not inform teachers of a 
student’s skills across the other dimensions.  

Second, math disability (MD) has typically been described as a core deficit in processing 
numerical quantity (Butterworth, Varma, & Laurillard, 2011) and number sense (Piazza et al., 
2010; Wilson & Dehaene, 2007). Consistent with this description, the development of tools to 
identify children at risk for math disabilities has concentrated primarily on aspects of number 
sense (Gersten et al., 2012). However, a recent review of cognitive theories and functional imaging 
studies suggest that a model of number sense deficits as the unitary source of math disability is an 
oversimplification (Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013).  Specifically, in addition 
to a deficit in number sense, MD has also been described as (a) a specific impairment in symbolic 
processing and visual-spatial reasoning (Rousselle & Noel, 2007); (b) a domain-general deficit in 
working memory (Geary, 2004; Swanson, Howard, & Saez, 2006); and (c) a hybrid of impairments 
representing and manipulating numerical magnitude on an internal number line and in working 
memory and attention (Ashkenazi et al., 2013). Additionally, a majority of children with MD have 
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comorbid math and reading disabilities that result in significant difficulties with word problems 
(von Aster & Shalev, 2007). Each of these subtypes of math disability may result in impaired 
performance across a variety of math constructs and applications that are critical to identify in order 
to develop and implement interventions that meet an individual student’s area of need. 

Taken together, an increased understanding of various subtypes of math disability as 
well as significant changes to the math curriculum in the early grades call for screening and 
diagnostic tools that are more comprehensive than those currently available.    

Improving Early Math Screening: The Primary Mathematics Assessment

The Primary Mathematics Assessment (PMA) (Brendefur & Strother, 2010) is being 
developed to address the major limitations of current early math screeners. The PMA is an 
assessment system designed for use in grades K-2 to identify students at risk for poor math outcomes 
across six dimensions and to provide further diagnostic information to guide intervention decisions. 
The PMA is designed as a multiple-gating system, in which students are first screened using the 
Primary Mathematics Assessment-Screener (PMA-S). Students who are identified as at risk on the 
screener are further assessed using the PMA-Diagnostic (PMA-D), a diagnostic assessment that 
provides a more complete evaluation of student performance to support intervention planning. 

Multiple-gating approaches for identifying deficits in mathematics offer a promising 
solution to the problems with the “direct route” model of screening, in which intervention 
decisions are made based on the results of a screening test (Johnson, Jenkins, Petscher, & Catts, 
2009). The goal of multiple gating is to administer a series of sequential assessments, in order 
to quickly assess a large population and identify students who have a high probability of being 
at risk for poor math performance. More in-depth evaluations are then used to confirm initial 
screening results and to provide a comprehensive analysis of a student’s needs, which can then 
be used to inform intervention efforts. Multiple-gating approaches have been successfully 
applied to behavioral screening (Walker, Small, Severson, Seeley, & Feil, 2014) but are less 
commonly applied to academics. This is unfortunate because use of multiple-gating systems has 
demonstrated a reduction in intervention resource consumption by as much as 58% compared 
to single-stage screening procedures (Loeber, Dishion, & Patterson, 1984). 

The PMA is hypothesized to measure six dimensions of math – number sequencing, 
operations (number facts), contextual problems, relational thinking, measurement, and spatial 
reasoning – that align closely with the Common Core State Standards in math and have been 
found to be highly predictive of later math achievement. A more complete review of the research 
supporting their importance for successful math achievement is presented elsewhere (Brendefur, 
Thiede, & Strother, 2012). Below, we provide a definition and brief synopsis of the research 
supporting each of the dimensions as critical components of early mathematics achievement. 
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Number sense/sequencing. Number sense has been suggested as the most important area 
of mathematical learning in early childhood (Clements & Sarama, 2007). This domain includes 
subitizing small quantities without counting, counting items in a set and knowing the final count 
word tells how many, discriminating between small quantities, comparing numerical magnitudes, 
and transforming sets of five or less by adding or taking away items (Jordan, Glutting, & 
Ramineni, 2008). A key component of number sense is counting or sequencing (Baroody, 1987). 
Counting has been described as the bridge between innate number sense and more advanced 
arithmetic abilities (Butterworth, 2004; Desoete, Ceulemans, Roeyers, & Huylebroeck, 2009). 
Given its role as a bridge to more advanced mathematics, sequencing is considered a prerequisite 
for future mathematical strategies such as basic operations (Blöte Lieffering, & Ouwehand, 2006; 
LeFevre et al., 2006). Several researchers (Geary, 2010; Geary, Hoard, & Hamson, 1999; Jordan, 
Glutting, & Ramineni, 2010) have found that difficulty in counting and other number sense 
deficits in early childhood is strongly predictive of later math achievement and should, therefore, 
be included as a key dimension on early math screeners. 

Number facts. Basic math operations include the ability to add, subtract, multiply, and divide 
single digit numbers to 10. Fluency with math operations is critical for math achievement throughout 
students’ school careers. Students with or at risk for math disabilities often have difficulty with fact 
retrieval, accurate computations (Geary, 2004) and flexibility, or the ability to solve problems in a 
variety of ways (Beishuizen & Anghileri, 1998). Immature calculating strategies, problems retrieving 
facts (Geary, 2004), and executive deficits (Passolunghi & Siegel, 2004) can prevent students 
from developing fluency with number facts (Geary, 2004), and result in more severe math learning 
challenges throughout school. 

Contextual problems. Accurately solving contextualized problems is a key factor in 
early mathematics achievement, and word problems are a significant part of elementary math 
curricula. Contextualized problems serve as a means of developing students’ general problem-
solving skills and can promote proficiency with whole-number arithmetic (Verschaffel, Greer, & 
DeCorte, 2007). As described by Jitendra et al. (2013), contextualized problem solving requires 
the ability to understand the underlying problem type and related problem-solving procedures 
for that class of problems (Hatano, 2003), strong metacognitive skills (Montague, 2007), and 
the ability to distinguish relevant information (related to mathematical structure) from irrelevant 
details (Van Dooren, de Bock, Vleugels, & Verschaffel, 2010). Students at risk for learning 
disabilities that impact both math and reading (e.g., comorbid MD + RD) typically have difficulty 
solving word problems (Ashkenazi et al., 2013).

Relational thinking. Relational thinking describes the thinking of students who use number 
and operation sense to reflect on mathematical expressions as objects rather than as arithmetic 
procedures to be carried out (Carpenter, Franke, & Levi, 2003). As such, relational thinking is a 
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precursor to the development of algebraic thinking. Sarama and Clements (2008) stressed the importance 
of recognition and analysis of patterns in the early years to bring order and facilitate generalizations 
in math. An example of relational thinking provided by Stephens (2006) suggests that a student who 
is thinking relationally is able to recognize the equivalence of 3(x+4) and 3x+12 by attending to their 
structures without the need to solve the problem. The ability to find and extend numerical patterns to 
develop relational thinking is heavily dependent on how students are taught and should be a significant 
component of children’s learning of mathematics (Sarama & Clements, 2009). Briefly, relational 
thinking is developed through helping students understand the equal sign (Driscoll, 1999), recognizing 
that equality is preserved if equivalent transformations are made on both “sides” of an equation, and can 
be fostered by posing true/false and open number sentences (Carpenter et al., 2003). 

Measurement. Measurement of length has a direct link to understanding fractions and 
decimals because measurements often do not use complete units (Cramer, Post, & del Mas, 2002; 
Lehrer, 2003; Watanabe, 2002). For example, a table can be 3-½ feet wide. Students must make 
sense of the part of the unit left over after the three complete units are counted. Through this process, 
students develop a model for the continuous nature of rational numbers, which supports learning about 
fractions and ratios in later grades (Lehrer, Jaslow, & Curtis, 2003; McClain, Cobb, Gravemeijer, & 
Estes, 1999). Measurement tasks also support stronger proportional reasoning, which in turn supports 
understanding of geometry, numeracy, and data analysis (National Research Council, 2001). The 
underlying principles of measurement are unit iteration, partitioning, comparative measurement, 
and the meaning of measurement. Unit iteration is the act of repeating a unit to measure an object’s 
attributes. Partitioning is the act of breaking an object into equal-sized measuring units (Lehrer, 2003). 
Finally, comparative measurement is the process of using a known measurement from one part of an 
object to find an unknown measurement (Kamii & Clark, 1997).

Spatial reasoning. Spatial reasoning is strongly correlated with achievement in math 
(Battista, 1981; Clements & Sarama, 2007; Gustafsson & Undheim, 1996). Students who perform 
well on spatial tasks also perform well on tests of mathematical ability (Geary, Hoard, Bryd-
Craven, Nugent, & Numtee, 2007; Holmes, Adams, & Hamilton, 2008; McLean & Hitch, 1999). 
Spatial reasoning involves (a) spatial visualization, or the ability to mentally manipulate, rotate, 
twist, or invert pictures or objects; (b) spatial orientation, or the ability to recognize an object 
even when its orientation changes; and (c) spatial relations, or the ability to recognize spatial 
patterns, understand spatial hierarchies, and imagine maps from verbal descriptions (Lee, 2005). 
Recent evidence indicates that spatial reasoning training can have transfer effects on mathematics 
achievement, particularly on missing term problems (e.g. 7 + __ = 15), which are important for 
developing algebraic understanding (Cheng & Mix, 2014).

As demonstrated through this review of math constructs, a multidimensional measure 
of early math ability that can be efficiently administered and interpreted by elementary teachers 



70International Journal for Research in Learning Disabilities Vol. 2, No. 2

would allow more children with math deficits across a variety of important areas to be identified 
for intervention before these deficits begin to negatively affect math achievement. Additionally, 
a comprehensive measure such as the PMA would assist with intervention planning for children 
with specific deficits in critical math dimensions by providing a better match of intervention 
strategy to the demonstrated need.

Purpose of the Study 

To develop a screening and diagnostic tool that adequately addresses the issues 
with existing math screeners, several phases of research have to be conducted. First, the 
psychometric qualities of the data, including estimates of reliability and investigations of 
dimensionality, need to be established. Next, the predictive validity of the screening tool needs 
to be established so that decision rules about performance can be tied to meaningful outcomes. 
Finally, the treatment validity of the assessment needs to be determined; that is, the extent to 
which the assessment contributes to positive outcomes (Gersten, Keating, & Irvin, 1995). Thus, 
there must be a clear and unambiguous relationship between the assessment data collected and 
the intervention that is recommended. 

The current study reports on the development and validation of items for the PMA-S 
and PMA-D. The specific aims of the research were to:

1. Develop and determine the best set of items for assessing student ability within each 
of the six dimensions.

2. Assess the dimensionality of the PMA. 
3. Determine the reliability of each of the six subscales.

Method

Participants

Students in kindergarten through second grade from seven schools within three districts 
in the Mountain Northwest participated in this project. All schools qualify for schoolwide Title 
1 programs, with 40% or more of the student population eligible for free or reduced-price 
lunch; the number of students in kindergarten through sixth grade ranged from 350 to 450. All 
students were invited to participate, and those who returned parent consent forms participated. 
Across schools, between 70-74% of eligible students participated. 

To prevent over-testing, not all participants responded to all of the questions. 
Classrooms were randomly assigned to complete two of the six dimensions. Three of the 
schools completed the number facts dimension in addition to their assigned dimensions. This 
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resulted in an uneven number of students completing the items to various dimensions. The 
demographics for the sample of students who participated in the data collection are presented 
in Table 1 by dimension. Students receiving special education services (i.e., students with 
individualized education program plans [IEPs]) were served under the category of speech or 
language impaired. 

Table 1

Demographics by Subscale

Number 
Sequencing

Number 
Facts

Contextual 
Problems

Zelational 
Thinking Measurement ^Ɖatial 

Reasoning

Students (total) 97 232 124 112 119 131

Grade Level

     Kindergarten 28 61 37 31 36 39

     First Grade 35 106 37 45 41 53

     Second Grade 34 65 37 36 42 39

Sex

     Male 42% 39% 47% 46% 47% 55%

     Female 58% 61% 53% 54% 53% 45%

Ethnicity

     hnsƉeciĮeĚ 14% 34% 27% 8% 29% 20%

     American  
     Indian

1% 0% 0% 0% 3% 2%

     Asian 0% 1% 0% 2% 2% 3%

     Black 2% 0% 1% 2% 1% 1%

     Eative                 0% 0% 0% 0% 0% 1%

     White 66% 43% 56% 70% 49% 50%

     Hispanic 16% 19% 14% 17% 16% 24%

     Dultiracial 0% 3% 2% 2% 2% 1%

ELL 0% 0% 0% 1% 0% 1%

IEP 0% 0% 1% 4% 0% 3%

Note. �>> с �nglish language learners͘ /�W с stuĚents ǁith inĚiviĚualiǌeĚ eĚucation Ɖrogram Ɖlans ;i͘e͘, sƉecial 
eĚucationͿ͘
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Procedures

The development and testing of the PMA took place over a nine-month period. A total of 
148 items were created and dispersed across the six dimensions as follows: (a) 23 number sequence 
items, (b) 34 number fact items, (c) 10 context items, (d) 25 relational thinking items, (e) 25 
measurement items, and (f) 31 spatial reasoning items. Items were administered to between 97 to 
232 students in grades K-2, depending on the dimension. Rasch analysis (described in more detail in 
the data analysis section) allowed us to determine whether items fit the model requirements. Items 
were distributed across the six dimensions, with some items linked across grade levels as outlined 
in Table 2. Linked items are common items administered to more than one grade level so the 
calibration process would be able to place all items and persons across grades on a common metric. 

Table 2

WDA Items LinŬed by 'rade Leǀel

Sequencing Facts
Zelational 
Thinking

Context Measurement
^Ɖatial 

Reasoning
Total

Items per test/
grade level

23 34 25 10* 25 31 148

Items linked K – 
1st grade

9 6 22 10 19 29

Items linked 1st – 
2nd grade

1 4 21 10 24 29

Items linked K – 
1st-2nd 0 1 17 10 18 27

Measures

The PMA is designed as a multiple-gating system for students in kindergarten through 
second grade. The item bank will be used to develop a PMA-Screener and a PMA-Diagnostic. 
Students whose performance on the PMA-Screener indicates they may be at risk for poor 
performance in one or more dimensions will be evaluated using the PMA-Diagnostic in order 
to get a fuller evaluation of their abilities. Currently, we have developed and validated a total of 
148 items across each of the six dimensions.

Data Analysis

Rasch models were used to analyze and evaluate the data.  The use of Rasch models allows 
items and persons to be arranged in order of difficulty and ability, respectively, along a common 
metric, which in turn enables direct comparisons both between and across individuals and items. 
The metric can also be maintained across time points, which is necessary for understanding 
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which students require intervention and for calculating meaningful change scores over time 
once intervention has been provided. In addition, the Rasch model provides fit indices that aid in 
identifying items that may not contribute to measurement of the underlying dimension or latent trait 
measured. Finally, Rasch analysis provides person reliability indices that are analogous to internal 
consistency coefficients (KR20 and alpha, see Smith [2001] for why person reliability is a more 
accurate estimate of internal consistency than traditional estimates).

To determine the best fitting items to include on the PMA, the Rasch model were used to 
identify items that did not contribute to a unidimensional construct. For each subscale, we used 
WINSTEPS v3.8 (Linacre, 2014) to fit the data to a dichotomous Rasch (1-Parameter Logistic) 
model. This allowed us to (a) evaluate whether the items measured the desired constructs using item 
fit statistics (misfitting items were then revised or eliminated), (b) establish the internal consistency 
reliability of the subscales, and (c) use item Wright maps, provided by WINSTEPS to analyze the 
distribution of item difficulty with respect to the distribution of children’s ability and remove items 
that were too difficult or too easy (i.e., poor targeting between item difficulty and children’s ability).

To investigate the overall dimensionality of the data, multidimensional Rasch models for 
dichotomous data (Smith & Smith, 2004) were used for all Rasch modeling. The program used 
to estimate parameters for the multidimensional models was Conquest (Wu, Adams, & Wilson, 
1997). We hypothesized the six dimensions of the PMA were statistically distinguishable. 
However, we also tested whether the dimensions could be combined to form a theoretically 
supported two-dimensional model consisting of Measurement and Spatial items as Dimension 
1 and Sequencing, Facts, Contextualized Problems, and Relational Thinking as Dimension 2. 
Both hypothesized structures as well as a unidimensional model were evaluated using Conquest, 
which is capable of fitting multidimensional extensions of most basic unidimensional Rasch 
models using the Multidimensional Random Coefficient Multinomial Logit (MRCML) Model 
(Wu et al., 1997). Specifically, all three models were estimated and compared for relative 
model fit. However, the statistically best fitting model (i.e., minimizing the -2 log likelihood) 
does not mean that the identified model will be the model that generalizes the best as the 
model could overfit the data. As such, fit indices that take into account model complexity (e.g., 
number of parameters and/or number of observations) were implemented. These indices have 
collectively been labeled parsimony fit indices. The four parsimony fit indices employed for 
the dimensionality assessment were Akaike’s Information Criterion (AIC; Akaike, 1974),  the 
sample corrected Akaike Information Criteria (AIC-C; Burnham & Anderson, 2002),  the 
Bayesian Information Criterion (BIC; Kass & Wasserman, 1995), and the Consistent Akaike 
Information Criterion (CAIC; Bozdogan, 1987). Lower values for these fit indices indicate the 
best tradeoff between model fit and generalizability. 
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Results

For each subscale, we first identified and removed misfitting items and investigated 
targeting issues. Item fit indices are expressed as mean squares, which represent the average 
value of squared residuals for each item, calculated from the difference between Rasch-predicted 
item performance and actual item performance in the observed data (Bond & Fox, 2013). Thus, 
larger mean square values represent poorer item fit with the Rasch model. The unstandardized 
unweighted mean square fit (MNSQ outfit) values have an expected value of 1. Values less than 
1 indicate possible item redundancy or model overfit, whereas values greater than 1 indicate 
unpredictability or model underfit. In standardized form (ZSTD outfit), the expected value is 0 and 
approximates a unit normal distribution. Items for which the MNSQ outfit statistic was <1.3 or 
>0.7 and for which the ZSTD outfit was <2.00 or >-2.00 were considered to be fitting satisfactorily 
(Bond & Fox, 2013). We had an uneven number of participants across the various dimensions; 
however, mean square statistics have been found to be relatively independent of sample size when 
using polytomous data (Smith, Rush, Fallowfield, Velikova, & Sharpe, 2008).

Once the final set of items was developed, Wright maps displaying the item difficulty 
and student ability for each dimension were created (see Figures 1-6). As a means of 
explanation, we interpret the Wright map for measurement (see Figure 5). It displays the 
student ability measures expressed in logits (short for “log odd units,” which result from 
applications of Rasch models) in a histogram on the left and the item difficult parameters on 
the right of the scale. The M, S, and T on either side of the vertical axis represent the mean, one 
standard deviation, and two standard deviations, respectively. The higher the student ability 
measure, the more able the student; the higher the item measure, the more difficult it is to get 
the item correct. Figure 5 indicates the items provide good coverage (e.g., targeting) for this 
sample of students, which helps contribute to a relatively small standard error of measurement 
for the student ability parameters. When item difficulties did not cover the range of student 
abilities, items were reviewed. For example, if there were too many students at the top of the 
map (ceiling effects) and too few items targeted toward these higher ability students, more 
difficult items were constructed. 
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&igƵre ϭ͘ Wright map for number sequencing.
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&igƵre Ϯ͘ Wright map for number facts.
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&igƵre ϯ͘ Wright map for contextualized problems.
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&igƵre ϰ͘ tright maƉ for relational thinŬing͘
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&igƵre ϱ͘ Wright map for measurement.
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&igƵre ϲ͘ tright maƉ for sƉatial reasoning͘

Rasch reliability. Rasch estimates of internal consistency reliability for items (see Table 
3) and students (see Table 4) were also used to determine the quality of the data. For both persons 
and items, reliability of .70 to .79 is considered acceptable, .80 to .89 is good, and .90 or greater is 
excellent (Duncan, Bode, Lai, & Perera, 2003). As illustrated, in the current study, reliability for the 
various dimensions ranged from .74 to .87 for persons, and from .69 to .93 for items.  
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Table 3

^Ƶmmary ^tatistics for Werson DeasƵres by ^Ƶbscale on the Wrimary Dath Assessment 

Dimension
/nĮt Kuƞit

^eƉaration Person Reliability
MNSQ ZSTD MNSQ ZSTD

Number Sequencing 
(n = 97)

Dean 1.00 .0 1.06 .1
1.79 .78

SD .17 .7 .60 .9

Number Facts 
(n = 232)

Dean 1.00 .0 1.02 .1
2.06 .81

SD .30 1.0 .69 1.0

Context (n = 124)
Dean .96 -.2 1.11 .5

1.77 .76
SD .13 1.0 .37 1.0

Zelational dhinŬing 
(n = 112)

Dean 1.00 .0 1.06 .0
2.53 .87

SD .20 1.0 .56 1.0

Measurement  
(n = 119)

Dean 1.00 .0 1.00 .0
2.12 .82

SD .15 .8 .26 .9

^Ɖatial Zeasoning 
(n = 131)

Dean .99 .1 .99 .1
1.70 .74

SD .23 .7 .47 .8

Note. MNSQ = unstanĚarĚiǌeĚ unǁeighteĚ mean sƋuare Įt values͘ �^d� с stanĚarĚiǌeĚ unǁeighteĚ mean sƋuare 
Įt values͘ 

Table 4

^Ƶmmary ^tatistics for Item DeasƵres by ^Ƶbscale on the Wrimary Dath Assessment 

Dimension
/nĮt Kuƞit

^eƉaration Person Reliability
MNSQ ZSTD MNSQ ZSTD

Number Sequencing 
(n = 23)

Dean .97 -.1 1.02 .1
1.50 .69

SD .25 1.2 .58 1.1

Number Facts 
(n = 34)

Dean .00 .33 1.01 .0

2.93 .90SD 1.15 .14 .19 1.2

Zelational dhinŬing 
(n = 25)

Dean .00 .25 -.2 1.06
3.65 .93

SD .98 .02 1.7 .63

Measurement  
(n = 25)

Dean .00 .21 .99 -.1
3.38 .92

SD .75 .01 .19 2.1

^Ɖatial Zeasoning ;n 
= 31)

Dean .00 .23 1.00 .0
3.45 .92

SD .86 .02 .21 1.6

MNSQ = unstanĚarĚiǌeĚ unǁeighteĚ mean sƋuare Įt values͘ �^d� с stanĚarĚiǌeĚ unǁeighteĚ mean sƋuare Įt 
values.



82International Journal for Research in Learning Disabilities Vol. 2, No. 2

PMA construct structure evaluation. We hypothesized that a six-dimensional model 
would best fit the data. However, based on current conceptualizations of math disability as primarily 
related to number sense, we also hypothesized a two-dimensional model, in which sequencing, facts, 
context, and relational thinking would reflect one dimension around the construct of number sense 
and measurement and spatial reasoning would reflect a second dimension related to visual-spatial 
processing (R. Gersten, personal communication, June 2, 2014). 

Table 5 lists the results of the multidimensional model comparisons. As illustrated, 
all four parsimony fit indices (i.e., AIC, AIC-C, BIC, and CAIC) favored the six-dimensional 
model, indicating that, among the models evaluated, the six-dimensional model is the most 
generalizable model for the PMA data. This finding was critical to supporting the conceptual 
framework of the PMA – the existence of six statistically distinguishable dimensions that can be 
used to inform a student’s math ability and ultimately inform instruction and intervention needs 
across these distinct dimensions.

Table 5

Dimensionality of the WDA

Model Deviance Parameters N AIC AIC-C BIC CAIC

6 dimensions 42940.54 235 751 43410.54 43625.92 44496.57 44731.57

2 dimensions 43518.43 217 751 43952.43 44129.93 44955.27 45172.27

Context 43999.14 215 751 44429.14 44602.75 45422.74 45637.74

Note. �/� с �ŬaiŬe s͛ /nformation �riterion͖ �/�Ͳ� с correcteĚ �ŬaiŬe /nformation �riteria͖ �/� с �ayesian 
/nformation �riterion͖ anĚ ��/� с �onsistent �ŬaiŬe /nformation �riterion͘

Discussion

As the evidence underscoring the importance of strong mathematics achievement 
continues to grow, more schools are realizing the need to begin instruction and intervention 
programs in the early grades to support students’ growth and performance in math. Many early 
elementary teachers do not have strong foundations in teaching math, and lack the ability to 
accurately assess their students’ instructional needs across a range of dimensions. This increases 
the likelihood that teachers use results from screening tools to inform their instruction. If 
the tools they use are one-dimensional (e.g., focus on number sense only), this may have the 
unintended consequence of restricting early mathematics instruction and intervention, leaving 
students unprepared for the demands of math instruction in later grades and possibly at increased 
risk of developing significant math learning challenges.  Given the comprehensive nature of the 
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Common Core State Standards in Mathematics and our increased understanding of multiple 
subtypes of math disability, assessment tools that align with a broader set of mathematical 
constructs may provide an important way to help teachers ensure that their instruction is 
meeting the needs of their young students.

To address these concerns, we developed the Primary Math Assessment (PMA). The 
goal of the PMA is to create a multiple-gating assessment system to support the need for an 
efficient, accurate but comprehensive evaluation of K-2 students’ math ability so appropriate 
instructional and intervention decisions can be made. The development of a multiple-gating 
assessment system requires several stages, including developing items and confirming that the 
dimensional model is consistent with the theoretical framework of the test, establishing the 
reliability and the validity of the screening and diagnostic results, and determining whether 
the use of the system has adequate treatment validity. The specific goals of this phase of PMA 
development were to (a) develop and determine the best set of items for assessing student 
ability within each of the six dimensions, (b) assess the dimensionality of the PMA, and (c) 
determine the reliability of each of the six subscales.   

With regard to these goals, our analyses showed that the person reliabilities for relational 
thinking and measurement were greater than .80, and .81 for number facts, thus indicating that 
these dimensions can be reliably measured with the current items on the PMA. Other dimensions 
had person reliabilities ranging from .74 (spatial reasoning) to .78 (sequencing), suggesting 
that more items may be needed to reliably measure these dimensions. Our analysis of the 
dimensionality of the PMA indicated that the best fitting model for the PMA is a six-dimensional 
model, supporting the PMA’s theoretical framework that a comprehensive assessment of multiple 
dimensions is important for informing student ability and subsequent intervention. 

These findings are important in two ways. First, they provide evidence that there are ways 
to assess a broad set of skills that underlie critical math dimensions predictive of later math success. 
Second, as a first step in creating a system that will provide a quick, yet comprehensive assessment 
of student performance across a broad range of skills to inform instruction and intervention, the 
results reported here represent an encouraging improvement to currently available tools to address 
the needs of students at-risk for math disability. Being able to assess math performance in the very 
early elementary grades means that efforts to intervene will likely be more successful.

Limitations

Although the results reported in this manuscript are very encouraging, it is important 
to note that the data collection was conducted within one state and included seven schools 
from three districts. Although the demographics of the participating students includes high 
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percentages of students eligible for free or reduced-price lunch, English language learners 
(ELL) and a high percentage of Latino students, the demographics of the sample do not reflect 
those in other areas in the nation. As research and development of the PMA continues, a 
broader participant pool will be recruited. 

Conclusion

It is evident that students in the early grades are not adequately prepared in mathematics 
(NCES, 2013). Using large data sets and nationally representative samples, several researchers 
have demonstrated that students who complete kindergarten with an inadequate knowledge of 
basic math concepts and skills will continue to experience difficulties with math throughout 
their elementary and secondary years (Duncan et al., 2007). This points to a critical need for 
early identification of students who are experiencing difficulties in math and subsequently to 
provide immediate and targeted intervention in order to build foundational skills and knowledge 
(Chernoff, Flanagan, McPhee, & Park, 2007). However, current screening tools tend to focus 
on few or single dimensions and are thus inadequate to fully inform early elementary teachers’ 
instructional planning.

There is a great need and demand for reliable, efficient, and valid primary level math 
screening and diagnostic tools to identify students with math deficiencies so teachers can 
intervene with differentiated lessons in order to remediate student deficiencies. The results 
of this initial development indicate that assessment of the six dimensions included in the 
conceptual framework of the PMA may be reliably measured in the early grades to promote 
strong assessment and instructional planning to improve students’ math proficiency. Next steps 
include developing and assessing new items and creating cut scores for the PMA-S and PMA-D 
that reliably identify students at risk for poor math achievement.
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